A Process Model and Typology for Software Product Updaters

Slinger Jansen, Gerco Ballintijn
Centre for Mathematics and Computer Science
Amsterdam, The Netherlands
Email: r.l.jansen, g.ballintijin@cwi.nl

Sjaak Brinkkemper
Institute of Information and Computing Sciences
Utrecht University
Utrecht, The Netherlands
Email: s.brinkkemper@cs.uu.nl

Abstract clude that both approaches unfortunately have signifi-

cant problems. On the one hand, existing software up-

Product software is constantly evolving through ex- date tools usually do not provide all the required func-
tensions, maintenance, changing requirements, changegionalities. On the other, the effort and risk of building

in configuration settings, and changing licensing infor- product update tools “in house” is often underestimated.

mation. Managing evolution of released and deployed The contribution of this article is threefold. Firstly, a
product software is a complex and often underestimated process model is provided that embodies the software
problem that has been the cause of many difficulties ypdate process and the uncovered areas of deployed
for both software vendors and customers. This paper software evolution. Secondly, a typology is provided to
presents a process model and typology to characterizec|assify software product updaters. Finally, the process
techniques that support product software update meth-model is used to compare current techniques and tech-

ods. Also, this paper assesses and surveys a variety ohology, and to indicate what areas still need to be cov-
existing techniques against the characterization frame- gre(.

work and lists unsolved problems related to software

product updaters Updating software can be seen as moving from one

configuration to another by addition, removal, replace-
ment, or reconfiguration of software functionality. A
physical software update contains the applicable func-
1. Product Updating tionality and configuration alterations. By this defini-
tion, changing a license or some configuration setting
Managing evolving software is a complex task for Can also be seen as part of the software update process.
software distributors and vendors. Moreover, maintain- 10 discuss the concepts and technologies of this paper,
ing a large software system, such as a business ERP apV€ introduce the notion of software product upda_ters. A
plication, can be particularly difficult and time consum- Software updater automates the process steps involved
ing. The tasks of adding new features, adding supportWith software updates. The main aim of a product up-
for new hardware devices and platforms, system tuning, dater is to continuously support user needs within chang-

and defect fixing all become exceedingly difficult as a INg circumstances. A product updater must communi-
system ages and grows. cate updated configurations of components to users but

One particular area of software evolution that re- also communicate back to the vendor what parts of the
quires more research is the evolution of released andenvironment have changed, such as necessary compo-
installed applications. To deal with the evolution of re- Nents and changed user requirements.
leased software, distributors and vendors currently have The focus of this paper lies on the customer-
the choice of either buying an (expensive) general prod- vendor relation. The relationship, however, is an
uct updating tool or building proprietary tools. After a abstract one since the customer can be a client com-
thorough analysis, to be presented in this paper, we con-puter in a client-server architecture, but also a software

vendor-software producer relationship can be accom- Receive Update -A customer can receive an update
modated by our model. The paper is based on productautomatically and manually. Issues for receiving the up-
software that is not developed further by the cus- date are security, authenticity of the update, and integrity
tomer, i.e., the vendor does not need to take mergeschecks. Another issue is the checking of pre-download
of source code into account. We feel that, though rel- dependency checks such as available disk space and the
evant, this problem lies in the area of source code presence of dependent components.
management and component systems. Remove Update -The presence of the update data
The remainder of this paper is organized as follows. that has been downloaded during the Receive Update
Section 2 describes what the software update processstep, enables switching between configurations and re-
looks like. The steps that make up the update processdistribution of updates. For this reason the remove up-
are modeled and explained. We also provide a typol- date is an explicit step in the update process model.
ogy for updaters and finally evaluate current software Deliver Update - Once a customer has been in-
updaters in relationship to the process model. Section 3formed of an update, the vendor wishes to transfer the
further defines the steps of delivery and deployment andupdate to the customer site by mail, e-mail, a website
uses the detailed descriptions to evaluate the same upfrom which the customer can download (pull) the up-
daters against the detailed descriptions. Finally, we dis-date, or a memory resident process that automatically
cuss the presented process model and our future work inveceives and installs an update. Several issues, which
Section 4. partly are discussed in this paper, arise when the trans-
fer of an update occurs, such as security problems and
the format in which the update is sent to the customer.

2. The Product Software Updating Process Install/Deploy Update - A customer installs an up-
date wishing to gain functionality, improve perfor-
2.1. Update Process Model mance, and fix problems. The deployment of up-

dates is the most complex software update process step,

This Section describes the software product updateand is explained in further detail in Section 3.
process model and a detailed description is given of Rollback/Deinstall Update - When a customer
the steps that make up the process. The update procesgishes to go back to a previous configuration, an up-
model has two participants: the customer and the vendor.date must be rolled back or deinstalled. Deinstallation
The process model, shown in Figure 1, is based on cus-ntroduces requirements on the software architec-
tomer states and vendor-customer interaction, and hasure and its extensibility, such as state transformations
been derived from other update model descriptions andtg the older configurations, and incremental updates in-
the evaluated tools. The customer blocks are states instead of destructive updates.
this diagram, with the bold lined states being final states. Configure Update -An update can be configured be-
The Uninformed Customer state is the start point for the fore activation, often by editing some configuration file,

process. Solid arrows are state transitions, which can b%uch as the httpd_conf file for the Apache webserver.
activated by both the vendor and by the customer. The \endor Feedback - An opportunity that is often

dotted arrows show interaction between the vendor andmissed by software producers, but widely used by for
the customer. Once the vendor offers the customer thejnstance Microsoft and Exact Software [1], is the use of
ability to update a product of that vendor the update pro- vendor feedback after the deployment of an update or
cess is initiated. The following list describes all the pro- component. Feedback generated by the deployer of the
cess steps in the product update model in detail: update can be sent back to the vendor to be used for fu-
Receive Information - Customers inform them- ture testing and feedback on the deployment process.
selves about updates from a vendor through commercial ~ Activate Update - After deployment the update must
channels, such as web sites, mail, e-mail, and por-be activated so that the update can be used by the cus-
tals. Other channels are memory resident notifiers, tomer. The activation process step is threefold and con-
such as the Windows Update Notifier, and memory res- sists of configuration, a license approval, and running
ident processes that automatically start download- the update. The configuration binds all unbound vari-
ing an update once a customer accepts the update that iabilities that have been introduced by the update. Licens-
sent. ing, if necessary, makes sure that the software update is
Advertise Update - An update will first be made used according to the vendor-customer contract.
available in some release repository. When a vendor Deactivate Update -Deactivation is required when
wishes to provide updates to its customers, the cus-a user does not want or is not allowed to use the update
tomers first need to be informed through the available anymore. The most important part of deactivation is the
communication channels. return of a license key to the licensing system or deploy-

Uninformed
Customer

Receive Info v

Advertise Update
> Vendor | AdvertiseUpdate o] Informed
i Customer
Vendor Receive Update Remove
Repository v
Deliver Update Customer
Possesses Update
Rollback/
Deploy/Install Update Deinstall
A 4
___ conmaure "l installed
Vendor Feedback Customer
Activate Update
\ 4 Deactivate
) Activated
Reconfigure C ; Customer

Figure 1. Update Process Model

ment and distribution system. If a deployment and distri- date software and we are less interested in the develop-
bution system is present, the deactivation process couldment process of the software that is actually distributed.
also signal the server so that future updates for the deacThe same holds for the channels through which the soft-
tivated software are no longer sent to this workstation or ware and requirements are communicated. In our model
workspace. we assume the presence of one vendor and one customer.

Reconfigure Update -An update can be reconfig- A more complex scenario is imaginable where a vendor
ured after activation. Reconfiguration often happens distributes through a software distributor or where a ven-
through a configuration interface at runtime, but can dor uses COTS (commercial-off-the-shelf components)
also be done by reconfiguring system settings that af-in its product, however, we abstract from such scenar-
fect the softwares behaviour. ios because these do not add to our contribution.

For our research we have evaluated the coverage ofp o A Typology for Product Updaters
these process steps for a number of techniques currently
used in the field or implemented by academia. The eval- |4 order to obtain more insight in the available prod-
uation shows what parts of the process model are still |t update technology we distinguish three types of
uncovered, how covered process steps havz_a been imp|eproduct updaters. The typology is created because it
mented by the techniques, and what requirements aréreates more insight into the specific available technol-
imposed by these implementations. _ ogy and draws out the process model for evaluation of
Each of the process steps has specific req“'remerﬁgroduct software update techniques. The three types are
and problem areas. Two process steps that are crucia istinguishable by looking at delivery and deployment

for the process model, being delivery and deployment, nethods and policies, and by looking at process cover-
are further explained in detail in Section 3. The release gge.

and derelease steps on the vendor side have not been in-

cluded in this model. The reason for this is that in this e Package Deployment Tools During the evalu-
paper we do not focus on the processes that take place on ation of update tools many package deployment
the side of the software vendor. At present our focus lies tools (PDTs) were encountered. These deploy-
on the implementation and process model of product up- ment technologies are based on the concept of a

package, and on a site repository that stores in- available. These characteristics were evaluated through
formation representing the state of each installed document studies, case studies, and finally by testing the
package. A package is an archive that con- software itself.

tains the files that constitute a system together

with some meta-data describing the system. Exam-2.4. Discussion

ples of these package tools are Red Carpet, APT,

Loki-Updaté, RPM-updaté, Nix [2], SWUP?, and When looking at the process coverage of the vari-
Portagé. RPM, Portage, and Nix are the most ad- ous techniques, there are clear distinctions between the
vanced tools. types. One of those distinctions is that current pack-

age deployment tools do not support any form of ven-
p- dor feedback. We will now discuss each type of updater.
The generic product updaters (GPUs) cover many of

any product. Two generic product updaters that the process steps. Especially in the area of licensing

are available commercially are InstallShiland and customer interaction the GPUs are strongly repre-
PowerUpdat® sented. Firstly, the GPUs have to be used by different

parties, sometimes even using different platforms, and

e Vendor Product Updaters - Vendor product up- therefore need to provide as many different update sce-

daters (VPUs) specifically facilitate the update pro- parios as possible. Secondly, the GPUs in this evaluation
cess of one product, such as Microsofts Windows 4re with the exception of the Software Dock [6], com-
XP update, Exact Software’s Product Updater [3], mercial tools, and therefore licensing and customer in-

and Symantec’s LiveUpdate. teraction are required. Finally, when compared to other

The typology described above is largely inspired by updaters', thg GPUs havg most opthns for yendor feed-
Carzanigas grouping [4] of deployment techniques and pack, which is a commercially attractive solution for get-
Ajmanis listing of update techniques [5]. One specific ting feedback from customers.
technology has not yet been included in the typology, be- ~ 1h€ package deployment tools (PDTs) are tools
ing runtime updaters, which are further discussed in Sec-SPecifically designed to deploy and install packages

tion 4. This technology, however, can still be described ©" (usually) open source based systems. These sys-
using the updater typology. tems are often extended with external tools from

which our evaluation abstracts. The tools therefore
cover all standard process steps strongly, but in the ar-
eas of customer interaction and licensing they are

In Table 1 is displayed how the evaluated update tech- ot sufficient. The reasons for thls are_part of the na-
niques cover the process steps that make up the updatf!r® Of package deployment. Firstly, issues such as
process model. The process coverage for update techYeNdor feedback are solved on another level, usu-
niques shows different classes of updaters and enable&!lY through bug reporting systems and developer com-
identification of updaters. The process coverage also dis-Tunities. Secondly, licensing is not an issue, since most
plays what areas certain techniques focus on and wha®f the software available in the open source commu-
process steps need more research from both academigity s free.
and the industrys Means that a process is completely ~ vendor product updaters (VPUs) are generally
coveredo Means that the process is only partially coy- WEaker in the areas of transferal and deployment, yet
ered. Coverage has been evaluated based on a numb@ifonger in the areas of customer interaction and li-
of characteristics of each process step, but for the sake“€nSing. In the area of customer interaction the VPUs
of brevity we cannot go into more detail. For instance, '€ Strongly represented, because that is their "bread
partial support for “send update” means that there are@d butter”. One clear distinction between VPUs
means to get the update to the customer, such as a releadd!d GPUs is that removal and rollback is not sup-
repository and communication channels. Full support POrted in most VPUs. Whereas GPUs assume that

for “send update” means that push technology is also e deployed products will be removed, VPUs as-
sume their products and updates will remain deployed

forever, which is not surprising in the case of up-

e Generic Product Updaters -Generic product up-
daters (GPUs) are updaters that completely a
stract from a product and attempt to be usable for

2.3. Evaluation of Update Process Coverage

; Egzxm:jzfnﬂ:; 'gg}::)m_update,oldmdex.html dates for a virus removal tool or security updates. VPUs
3 http://swup.trustix.org/ are have restricted functionality, because they have
4 http://mww.gentoo.org/doc/en/portage-manual.xml been designed to only perform these steps for one prod-
2 www.installshield.com uct and one way of vendor-customer interaction. We

www.powerupdate.com see that many of the methods used in VPUs are sim-

Licensing

Activate
Update
[]
[]
[]
o

Deactivate
[]
[]
[]
(o]

Deployment

Re-
configure
0]
[)
(0]
[)
[)
[]

Rollback | Remove| Configure
[]
[]
[]
[]
(e}
[]
[]
[]
[]
[]

Install

Transferal

Receive

Send
Update | Update

Customer interaction

Receive | Advertise

Vendor

Feedback| Update

Update
()
[e)
[)
[)
[
[e)
[e)
[]

Info
O
(0]
[
[]
(0]
o
(@]
[

Type

GPU
GPU
GPU
GPU
PDT
PDT
PDT
PDT
PDT
VPU
VPU
VPU
VPU

ProductName

Software Dock| GPU

FileWave

PowerUpdate
APT

InstallShield

Red Carpet
RPM-update

Nix
Loki Update

SWUP
Portage
Exact PU
MS SUS

LiveUpdate

Legend:e Full support;o Partial Support
GPU: General product updater; VPU: Vendor product updater; PDT: Package deployment tool

Table 1. Update Process Coverage

plifications of the more complex software update mod-
els.

3. Delivery and Deployment

Two steps in the proposed process model form the
core of our model, being delivery and deployment. In
this Section the process steps of delivery and deploy-
ment are further explained. The updating techniques are
then evaluated against the provided definitions.

3.1. Delivery

Delivery formats identify many characteristics of up-
daters. Some updaters, such as PDTs focus on the sole
delivery of packages, whereas GPUs attempt to support
the full myriad of delivery formats. Delivery formats af-
fect the size of updates that are delivered to customers.
The choice of delivery format therefore affects the to-
tal model of delivery, especially in an environment with
limited resources.

New configurations can be delivered to customers in
different ways. The configurations can be transferred in
the following formats:

e Packages of Components A package of compo-
nents can be delivered to a customer. Usually these
packages first need to be unpacked, before they
can be installed and activated. Examples of tech-
nigues that use packages are RPM-update, APT,
DeployMe, Red Carpet, Portage, and Nix.

e Components -A separate component consists of a
batch of files.

e Files - The simplest form of transfer data are sepa-
rate files. These files can be licenses, configuration
settings, and binaries.

¢ File deltas - Differences between a customer site
configuration and a vendor site configuration can
be expressed as file deltas. File deltas can be trans-
ferred using efficient algorithms such as Rsync [7].
A file delta is a listing of differences between two
file versions, with which any of the two versions
can generate the other version. Sending just the dif-
ference between files is more efficient than sending
the complete file.

Without some pre-processing at the customer site,
each of these formats would place some restrictions on
the final deployment environment. However, when cor-
rectly assembled before deployment these formats are
interchangeable. For example, file deltas for a complete
component can be used to generate the new component.
The chosen delivery format(s) affect different factors,
such as the size of updates and the deployment method,

and together with the deployment issues and deploymentWell known systems that assist with source distributions

policies uniguely identify an updater. Service packs are are Maak [9] and RTools [10]. It should be noted that the

similar to component packages in our delivery formats. three deployment methods mentioned above can just as
well be applied to source distributions.

3.2. Deployment Other issues that deal with deployment are the abil-
ity of a technique to provide scripting, to do dependency

The process of installing updates introduces most analysis, to perform integrity checking, to deploy multi-
complexity for software vendors. The software archi- ple versions of the same component, and to enable push
tecture of a system determines the extensibility of the technology. Each of these abilities puts specific require-
system, whether the update can occur at runtime or not,ments on the deployment and implementation architec-
and whether there are scripting tools available to per- ture.
form certain tasks (such ddake. Finally, dependen- Scripting is used to perform post deployment con-
cies need to be checked during deployment, such as defiguration on an update. Such scripts can be used to
pendencies on the operating system, the presence of cerexecute, activate, configure, compile and build an up-
tain components, the compatibility between the update date. Scripts can be shell scripts, which are often used
and the current customer configuration, and many oth- by package deployment tools, but also a specifically de-
ers. signed language that registers or unregisters Plug-ins. In

To deploy or install the delivered software, a choice the process model presented in Figure 1 we did not yet
for an appropriate deployment method needs to be madeintroduce verification of an update, such as synchroniza-
Some of these methods are: tion checks, signatures, and completeness checkers. In
each of the three final states, a customer should be able
to perform verification steps.

Dependency analysis is a much studied area of de-
ployment [11] and aims to provide a complete and con-
sistent set of components. To achieve this goal many
problems need to be tackled, such as support for multi-
ple versions of components, automatic resolution of de-
pendencies, and explicit management of the dependen-
cies. One specific ability of dependency checking that
places extra requirements on the deployment architec-
ture is the support for multiple versions of a component.
Multiple version support is therefore part of the eval-
uation process model and is a technology that enables
switching between configurations and having two com-
ponents depend on different versions of another compo-
nent. Finally, push technology puts extra requirements
on the implementation of the messaging architecture of
an updater. A customer needs to be able to receive up-

e Plug-in - Plug-ins are often used to create exten- dates automatically and the vendor needs to be aware of
sible configurations. The method of using Plug-in aJ| the customer workspaces.

architectures supports the extension of a configu-

ration by addition and removal of unique Plug-ins. 3 3 Eyaluation of Delivery and Deployment
Other Plug-in [8] can handle different versions of

the same Plug-in as well. The evaluation of the following techniques includes
e Deinstall/Reinstall - For many applications an up- more specific definitions of the delivery and deployment
date constitutes the uninstallation of all previous in- Process steps than the evaluation done by Carzaniga et
stalled versions of that applicatin al [12], because the definitions need to be made more
i L explicit. The evaluation shows that updaters grouped
I_n the open source community apppcqﬂoqs are often by just the process coverage do not distinguish subtle
delivered and deployed as source distributions. Thes et important differences in delivery formats and de-

ts)ource distributions first need FO bﬁ cgmrined, which can g{loyment policies. These differences have been listed
€ seen as a separate step Iin the deployment proces ere, and provide a more detailed and defined evaluation

framework. To obtain the detailed framework, we have
focused on delivery and deployment. Delivery and de-

e Overwrite - The deployment method employed
most often by software vendors is the method of
overwriting the application files, license files, or
configuration settings. The solution bases itself on
the assumption that the deployed set of files or
components does not change over time due to exter-
nal forces. There is no way to rollback an overwrite,
unless the customer is using a versioned file sys-
tem. One example of an overwriting update method
is the Windows Updater which will first unregister
a dll, overwrite it with a newer version, and regis-
ter it again. Another example is the Exact Software
Product Updater, which compares all the versions
of the locally available files to the available files
on the release site. When there are differences, the
product updater overwrites only the different files
on the customer site.

7 Examples are: NullSoft Winamp, LavaSoft Ad-Aware, etc

ployment are more complex than the other process stepsing. Contrary to the other update types, VPUs often do
because there are more alternatives to efficiently achieveallow for post deployment configuration, either builtinto
the goals that are part of these process steps. the updater or the application. Finally, the VPUs do not
The evaluation in Table 2 includes a description of make use of push technology.
what formats of delivery are used by each updater. The
evaluation also describes what deployment methods and4, Discussion and Future Work
architectures are supported by each updater. Finally,
some issues that uniquely identify an update technique The aim of this paper is to show that there is no prod-
are evaluated. The criteria for evaluation are similar to uct updater that provides all functionalities required by
those for Table 1. software vendors. On the other hand the development of
From the evaluation of the updaters against the de-VPUs is not an efficient solution, since each software
scriptions of delivery and deployment we deduce the vendor is implementing a subset of the process steps
following. To begin with, the generic product updaters shown in our process model. It is surprising that no GPU
(GPUs) support all different delivery formats. Especially has yet been adopted universally by the industry. One of
the two most advanced tools in this category, PowerUp- the reasons for presenting the process model in Figure 1
date and InstallShield, are the only tools able to deal and the typology is to redefine the requirements on and
with all formats of delivery. These are also the only tools re-establish the need for such GPUs.
that are able to send across file deltas, instead of com-
plete files. The GPUs are not well represented in the de-4.1. Typology
ployment feature area, because these features are spe-
cific to deployment environments, from which the GPUs The types presented in the typology all have specific
wish to abstract. However, GPUs are quite able when it requirements and functionalities. To begin with GPUs
comes to commercially interesting push technology, es-are generally commercial tools focused on deploying
pecially when compared to the other updater categories.software on Windows based systems, with the exception
GPUs generally do not make use of Plug-in technol- of PowerUpdate, which is how focusing on multi plat-
ogy, which can be explained by the fact that Plug-ins are form deployment.
largely dependent on the Plug-in software architecture. Secondly, the discussed PDTs have some interesting
GPUs are strongly represented for the feature of script- characteristics. Nix, for instance, is a “stop the world”
ing since it is required to perform post installation con- system, whereas Portage and RPM simply extend cur-
figuration steps. rent functionality. Nix, however, stores components in
The package deployment tools (PDTs) support only isolation from each other in a part of the file system
package deployment and generally only support dein- called the store, where each component has a globally
stallation and reinstallation to update a package. Script-unique name that enables pointer scanning. The con-
ing and dependency analysis are always present instruction of component configurations and the result-
package deployment systems, to enable post deploy-ing closures are described using Fix store expressions.
ment configuration and completeness checking with Safe deployment is achieved by distributing these ex-
other components. PDTs do not use push technol-pressions, along with all components in the store refer-
ogy, which can be explained by the fact that (open enced by them.
source) users of these PDTs often do not want oth- Another interesting PDT is Portage. Portage, as most
ers to be in charge of their software. PDTs are strongly other package management system, can resolve depen-
represented in the areas of dependency analysis and indencies; but one feature that makes it different is the
tegrity checking. The dependency analysis is requiredfact that it also supports conditional dependencies. By
for PDTs because packages have many dependency rechanging one configuration variable in a Portage config-
lationships with other packages. Automatic resolution uration file it can disable optional support (and thus the
of these dependencies therefore is a valuable feature. Inneed to depend on it) for particular features or libraries at
tegrity checking prevents instability and ensures authen-compile time. In addition Portage enables multiple ver-
ticity. sions of packages installed simultaneously to satisfy the
Finally, the Vendor product updaters (VPUs) all de- demands of other packages. The traditional approach to
pend on files as the primary format of transfer to the cus- this problem has been to treat different versions of the
tomer. These files generally overwrite the previous in- same package as different packages with slightly differ-
stallation, except when these files are special Plug-ins,ent names, such as with RPM and APT.
such as virus definitions for LiveUpdate or unregistered Thirdly, there are advantages and disadvantages
dlls for Microsoft SUS. The VPUs do not incorporate to VPUs. To begin with there are commercial advan-
much dependency analysis, scripting, or integrity check- tages to VPUs. An important reason for using VPUs

Delivery Deployment Deployment
Format Policy N Issues o
% =
S22 |2
Il |58 8] |2
— =1 — c
) é S| 2 % o % § S g
g2 s|Els|s|S|E €2 5
[T E|8]| o c| 2 TIE 2|82 |63
e &S |T|E||d|z|8|B|8|E|2|&|0
PowerUpdate GPU || o °
InstallShield GPU || o °
Red Carpet GPU || o . . . o | o | o o| o
Software Dock GPU ° ° ° ° ° ° ° o o ° o
FileWave GPU ° . . o
APT PDT . ° ° ° °
RPMupdate PDT || e . e | o | o o
Nix PDT ° ° ° ° ° ° o
SWUP PDT . ° ° °
Portage PDT) ° ° ° ° ° o
Loki Update VPU . . . o
Exact PU VPU . . o
Windows XP SUS| VPU . e | o o o o
LiveUpdate VPU ° o | o °
Legend:e Full support;o Partial Support
GPU: General product updater; VPU: Vendor product updater;
PDT: Package deployment tool

Table 2. Delivery and Deployment Evaluation

instead of GPUs for software vendors is that they them- Much work has been done in the areas of runtime and
selves are responsible for the update processes of theidynamic updating [13]. Providing a service or system
products. For Norton Anti-Virus for example, Norton that is available 24 hours a day is a commercially attrac-
is completely responsible for security procedures, net- tive solution to many problems. These systems of course
work management, and all other aspects having to doalso evolve with time, thereby requiring some extensible
with product updating. Often VPUs are a cheap so- mechanism. We shall not list these mechanisms here, but
lution over GPUs, however, VPUs can only cover a Ajmani has created a list of mechanisms and component
small problem area compared to general product up-frameworks [5]. There are two important factors to con-
daters and the complexity of the software updating sider when looking at runtime updating, being continu-
process grows as requirements increase. When requireity and state transfer [14] [15]. An interesting technique,
ments are stated for the product updater to supportdesigned by Ajmani and Liskov [8], attempts to support
different versions, customers, customizations, and li- many different versions of one component at runtime,
censes, it soon becomes apparent to the software venthereby enabling runtime extension. Runtime updaters,
dor that specialized knowledge is required. The limited however, are generally focused around one technology,
availability of such tools and the cost of implement- such as CORBA or J2EE, and do not focus on any other
ing a GPU, have lead many software vendors to developprocess modules than transferal and deployment. Sim-
their own VPUs and essentially reinvent the wheel. An- ple versions of these technologies are often used in other
other disadvantage is that the updaters commonly per-product updaters, such as Microsoft SUS or LiveUpdate.
form destructive updates. Microsoft Software Update
Services, for instance, overwrites dlls, without any roll-

back functionality. 4.2. Delivery and Deployment

A category of update technology that is not specified The discussed features of the deployment process in-
in this paper is runtime updating, because run-time up- troduce many questions about software updating tech-
dating is not widely applied for software products yet. niques. To begin with, the file delta format and push

technology is not (yet) strongly represented among the4.4. Related Work
evaluated software updaters. The absence of the file
delta format can be explained by the fact that band- ~ Carzaniga et al [12] described some of the techniques
width and disk space are cheap nowadays and thereforénentioned in this article, however, recent developments
the time and money invested in such technology is not have lead to new insights and techniques. For the eval-
profitable. The fact that push technology is hardly avail- uation a list of techniques focused on runtime updat-
able can be explained by the type of software evaluated.ing from Ajmani [5] has been used. On the lower lev-
Most of the techniques mentioned in this paper are prod- €ls of component update architectures, Clegg [16] pro-
uct updaters and customers are more interested in havvides an evaluation of component update methods for
ing a working product than a product that is acutely implementers of run-time updating.
and always up to date. Secondly, multiple versions are
only supported by technologies from academia (soft- 4.5. Conclusion
ware dock, Nix) and Portage. The complexity of dealing
with multiple versions of the same component, which The contribution of this article is threefold. To begin
is crosscutting through a system, has not received suf-With we present a process model that represents the soft-
ficient attention. Finally, practically all tools perform ware update process and uncovers the areas of deployed
some deployment environment checking, whether the software evolution that require more research. Also, we
tool checks for diskspace, such as the Exact Product Up-provide a typology that classifies software updaters. Fi-
dater, or provides an advanced customizable checkingnally, we use the process model and typology to com-
mechanism, such as the PowerUpdate and InstallShieldoare current update tools.
GPUs.

References

4.3. Future Work [1] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Software

Release and Deployment at Exact, A Case Study Report.”
One requirement that has as of yet not been discussed ~ Technical Report CWI, 2004.

is what Carzaniga et al [12] refer to as site abstraction, [2] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a

the ability to abstract from the vendor-customer model memory management discipline on software deploy-

and introduce one or more redistribution sites into the ment,” in IEEE Workshop on Software Engineering

model. Carzaniga et al already refer to a redistribution (ICSE'04) 'EEE'_ 2(_)_04-)

tool, the Interdock, in their model, yet no implementa- [3] S.Jansen, G. Ballintijn, ar_1d S. Brinkkemper, “Integrated

tion has yet been created. An open research issue is o~ SCM/PDM/CRM and Delivery of Software Products to

redefine such an architecture where (re)distribution of 160.000 Customers,” ilechnical Report CWI, sumbmit-

ts. fil i d fi fi ti ted for publication 2005.
components, files, licenses, and configuration Settings [4] R. S. Hall, D. Heimbigner, and A. L. Wolf, “Evaluating

are mod_elled.)) o]] software deployment languages and schemalCi8M,
The aim of the issues listed in this paper is to explic- 1998, pp. 177-196.

itly define software update problems experienced in the [5] s. Ajmani, “A review of software upgrade techniques for

field. One striking conclusion that can be drawn from distributed systems,” Aug. 2002.

the evaluation is that re-configuration is highly under- [6] R. Hall, D. Heimbigner, and A. L. Wolf, “A cooperative

estimated for product updating. Another problem is that approach to support software deployment using the soft-

many of the requirements of software vendors for prod- ware dock,” ininternational Conference on Software En-

uct updaters are not yet satisfied by GPUs. gineering 1999, pp. 174-183.

The listed techniques can support the industry and [7] A. Tridgell, “Efficient algorithms for sorting and syn-
can be inspirational for those designing their own tech- Chro_”'zat_'our" Ph.D. dissertation, 1999. o
nique. The presented material paves the way to build a [8] S. Ajman'l', ‘Automatic software gpgrades for distributed
generally applicable product updater. However, many of __ SYStems” Apr. 2003, ph.D. thesis proposal.
the problems mentioned in this paper have already been [9] E. Dolstra, Integriit!ng software construction and soft-
solved by tools such as Nix and the Software Dock. Our gg;&::eplcéygzghr ;&ithdg;e;gz&oenr{atl g‘gﬁqc;g; :
plan is to reuse some of these techniques and build a Lecture Notes in Computer Science, B. Westfechtel, Ed.,
component framework to support all aspects of the soft- vol. 2649. Portland, Oregon, USA: Springer-Verlag,
ware update process. Such a tool can contribute to the May 2003, pp. 102-117.
industry and open source community as a plaftform for [10] H. E. Harrison, S. P. Schaefer, and T. S. Yoo, “Rtools:
development of update techniques and provide a stan- Tools for software management in a distributed comput-
dard architecture for such a tool. ing environment,” Summer 1988, pp. 85-93.

[11] M. Larsson and I. Crnkovic, “Configuration management Software Dock - The Software Dock (v4.0), a project that
for component-based systems,” Rroc. Int. Conf. on started at the University of Colorado, is a system of loosely
Software Engineering (ICSE2001. coupled, cooperating, distributed components that are bound
[12] A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek, together by a wide area messaging and event system. The com-
D. Heimbigner, and A. Wolf, “A characterization frame- ponents include field docks for maintaining site specific con-
work for software deployment technologies,” 1998. figuration information by consumers, release docks for manag-
[13] M. W. Hicks, J. T. Moore, and S. Nettles, “Dynamic soft- ing the configuration and release of software systems by pro-
ware updating”’ inNSIGPLAN Conference on Program_ ducers, and a variety of agents for automating the deployment

ming Language Design and Implementati@®01, pp. process.
13-23. FileWave - FileWave v4.5 is quite similar to Red Carpet
[14] V. Mencl, Z. Petrova, and F. Plasil, “Update description With @ lot less features. Mostly, FileWave focuses on deploy-
language,” inWeek of Doctoral Students WDS, 4999. ment of applications on Mac OS X environments, though re-
[15] R. Bialek and E. Jul, “A framework for evolutionary, cently they have started to support Microsoft based environ-
ments as well.

dynamically updatable, component-based systems,” in
The 24th IEEE International Conference on Distributed
Computing Systems Workshoptachioji, Tokyo, Japan,

APT - The Advaced Package Tool (v0.5.4) installs pack-
ages and manages dependencies automatically for Debian en-

March 23-24 2004, pp. 326-331. vironments. APT has been implemented for Red Hat by Con-
16] S. Clegg, “Msc independent study: Evolution in extensi- nectiva. .
[16] ble cor%%onent-lbas:d systemsu" %’00;/ utionin ex ! RPMupdate - RPM (v9.0) is the Red Hat Package Man-
' ' ager.
Nix - Nix (v0.6.1) is a system for software deployment de-
Acknowledgment veloped by the Trace research group. It supports the creation

and distribution of software packages, as well as the installa-
We would like to thank Eelco Dolstra for our fruit- tion and subsequent management of these on target machines.
ful discussions on configuration settings. We would also ~ SWUP - Swup (v1.2) is short for “Software Updater” and
like to thank Sameer Ajmani for providing an unpub- can automatically update packages together with, inde-
lished list of update techniques on-line and Tijs van der pendent of the package manager.
Storm for extensively reviewing the paper. Finally, we Portage -Portage (v2.0) is the package manager for Gen-

would like to thank Arie van Deursen for his helpful re- too Linux. Portage has some slight advantages over the other
view package deployment tools, such as conditional dependencies.

Loki Update - The Loki Update Tool (v1.0.10) is a small
. L. tool written to support the most trivial tasks of updating, such
Appendix: Short Description of Update as downloading and installing.
Technologies Used Exact PU - The Exact Software Product Updater (v2004)
provides the mechanisms for delivering packages and updates
PowerUpdate -PowerUpdate v2.0 is a commercial multi- to the customer. When the product updater is run at the cus-
platform software updating and delivery tool designed to main- tomer site, it needs to be provided with an installation loca-
tain software applications. PowerUpdate can be integrated intotion (CD ROM or the Web), a license file and a local installa-
integrated development environments and supports featuredion that is updated.
such as environment analysis and cross platform deployment. Microsoft SUS - Microsoft Software Update Ser-
PowerUpdate can also check integrity of products on the cus-vices (v1.0) is used for Microsoft Office Update and Win-
tomer side. dows Update to deliver service packs, bug fixes, and security
InstallShield - InstallShield (update service v3.0) is updates to customers. The updater works mainly at run-
PowerUpdate’s largest competitor and differs from PowerUp- time.
date in the facts that it is only suitable for deployment on LiveUpdate - Symantec provides different types of pro-
Microsoft based environments and cannot do integrity check- tection systems for computers connected through a network.
ing. Symantecs Antivirus and Firewall software are widely used,
Red Carpet - Red Carpet v2.2.3 is a software deployment and are updated through LiveUpdate (v2.0). Our evaluation
tool for Linux. Red Carpet works through installtion channels also includes the license tool LiveSubscription, because it cov-
that can be used to communicate and deploy updates at cusers a relevant part of the update process.
tomers. Red Carpet supports automatic dependency and con-
flict resolution. One important feature of Red Carpet is that
they provide Ximian, which is basically a server that contains
many different packages that can be deployed for free.

