
A Process Model and Typology for Software Product Updaters

Slinger Jansen, Gerco Ballintijn
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands
Email: r.l.jansen, g.ballintijn@cwi.nl

Sjaak Brinkkemper
Institute of Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

Email: s.brinkkemper@cs.uu.nl

Abstract

Product software is constantly evolving through ex-
tensions, maintenance, changing requirements, changes
in configuration settings, and changing licensing infor-
mation. Managing evolution of released and deployed
product software is a complex and often underestimated
problem that has been the cause of many difficulties
for both software vendors and customers. This paper
presents a process model and typology to characterize
techniques that support product software update meth-
ods. Also, this paper assesses and surveys a variety of
existing techniques against the characterization frame-
work and lists unsolved problems related to software
product updaters.

1. Product Updating

Managing evolving software is a complex task for
software distributors and vendors. Moreover, maintain-
ing a large software system, such as a business ERP ap-
plication, can be particularly difficult and time consum-
ing. The tasks of adding new features, adding support
for new hardware devices and platforms, system tuning,
and defect fixing all become exceedingly difficult as a
system ages and grows.

One particular area of software evolution that re-
quires more research is the evolution of released and
installed applications. To deal with the evolution of re-
leased software, distributors and vendors currently have
the choice of either buying an (expensive) general prod-
uct updating tool or building proprietary tools. After a
thorough analysis, to be presented in this paper, we con-

clude that both approaches unfortunately have signifi-
cant problems. On the one hand, existing software up-
date tools usually do not provide all the required func-
tionalities. On the other, the effort and risk of building
product update tools “in house” is often underestimated.

The contribution of this article is threefold. Firstly, a
process model is provided that embodies the software
update process and the uncovered areas of deployed
software evolution. Secondly, a typology is provided to
classify software product updaters. Finally, the process
model is used to compare current techniques and tech-
nology, and to indicate what areas still need to be cov-
ered.

Updating software can be seen as moving from one
configuration to another by addition, removal, replace-
ment, or reconfiguration of software functionality. A
physical software update contains the applicable func-
tionality and configuration alterations. By this defini-
tion, changing a license or some configuration setting
can also be seen as part of the software update process.
To discuss the concepts and technologies of this paper,
we introduce the notion of software product updaters. A
software updater automates the process steps involved
with software updates. The main aim of a product up-
dater is to continuously support user needs within chang-
ing circumstances. A product updater must communi-
cate updated configurations of components to users but
also communicate back to the vendor what parts of the
environment have changed, such as necessary compo-
nents and changed user requirements.

The focus of this paper lies on the customer-
vendor relation. The relationship, however, is an
abstract one since the customer can be a client com-
puter in a client-server architecture, but also a software



vendor-software producer relationship can be accom-
modated by our model. The paper is based on product
software that is not developed further by the cus-
tomer, i.e., the vendor does not need to take merges
of source code into account. We feel that, though rel-
evant, this problem lies in the area of source code
management and component systems.

The remainder of this paper is organized as follows.
Section 2 describes what the software update process
looks like. The steps that make up the update process
are modeled and explained. We also provide a typol-
ogy for updaters and finally evaluate current software
updaters in relationship to the process model. Section 3
further defines the steps of delivery and deployment and
uses the detailed descriptions to evaluate the same up-
daters against the detailed descriptions. Finally, we dis-
cuss the presented process model and our future work in
Section 4.

2. The Product Software Updating Process

2.1. Update Process Model

This Section describes the software product update
process model and a detailed description is given of
the steps that make up the process. The update process
model has two participants: the customer and the vendor.
The process model, shown in Figure 1, is based on cus-
tomer states and vendor-customer interaction, and has
been derived from other update model descriptions and
the evaluated tools. The customer blocks are states in
this diagram, with the bold lined states being final states.
The Uninformed Customer state is the start point for the
process. Solid arrows are state transitions, which can be
activated by both the vendor and by the customer. The
dotted arrows show interaction between the vendor and
the customer. Once the vendor offers the customer the
ability to update a product of that vendor the update pro-
cess is initiated. The following list describes all the pro-
cess steps in the product update model in detail:

Receive Information - Customers inform them-
selves about updates from a vendor through commercial
channels, such as web sites, mail, e-mail, and por-
tals. Other channels are memory resident notifiers,
such as the Windows Update Notifier, and memory res-
ident processes that automatically start download-
ing an update once a customer accepts the update that is
sent.

Advertise Update - An update will first be made
available in some release repository. When a vendor
wishes to provide updates to its customers, the cus-
tomers first need to be informed through the available
communication channels.

Receive Update -A customer can receive an update
automatically and manually. Issues for receiving the up-
date are security, authenticity of the update, and integrity
checks. Another issue is the checking of pre-download
dependency checks such as available disk space and the
presence of dependent components.

Remove Update -The presence of the update data
that has been downloaded during the Receive Update
step, enables switching between configurations and re-
distribution of updates. For this reason the remove up-
date is an explicit step in the update process model.

Deliver Update - Once a customer has been in-
formed of an update, the vendor wishes to transfer the
update to the customer site by mail, e-mail, a website
from which the customer can download (pull) the up-
date, or a memory resident process that automatically
receives and installs an update. Several issues, which
partly are discussed in this paper, arise when the trans-
fer of an update occurs, such as security problems and
the format in which the update is sent to the customer.

Install/Deploy Update - A customer installs an up-
date wishing to gain functionality, improve perfor-
mance, and fix problems. The deployment of up-
dates is the most complex software update process step,
and is explained in further detail in Section 3.

Rollback/Deinstall Update - When a customer
wishes to go back to a previous configuration, an up-
date must be rolled back or deinstalled. Deinstallation
introduces requirements on the software architec-
ture and its extensibility, such as state transformations
to the older configurations, and incremental updates in-
stead of destructive updates.

Configure Update -An update can be configured be-
fore activation, often by editing some configuration file,
such as the httpd.conf file for the Apache webserver.

Vendor Feedback - An opportunity that is often
missed by software producers, but widely used by for
instance Microsoft and Exact Software [1], is the use of
vendor feedback after the deployment of an update or
component. Feedback generated by the deployer of the
update can be sent back to the vendor to be used for fu-
ture testing and feedback on the deployment process.

Activate Update -After deployment the update must
be activated so that the update can be used by the cus-
tomer. The activation process step is threefold and con-
sists of configuration, a license approval, and running
the update. The configuration binds all unbound vari-
abilities that have been introduced by the update. Licens-
ing, if necessary, makes sure that the software update is
used according to the vendor-customer contract.

Deactivate Update -Deactivation is required when
a user does not want or is not allowed to use the update
anymore. The most important part of deactivation is the
return of a license key to the licensing system or deploy-



Vendor
Informed
Customer

Uninformed
Customer

Advertise Update

Receive Info

Customer
Possesses Update

Rollback/
Deinstall

Receive UpdateVendor
Repository

P
roduct

Deliver Update

Installed
Customer

Deploy/Install Update

Vendor Feedback

Activated
Customer

Deactivate
Activate Update

Remove

Reconfigure

Configure

Figure 1. Update Process Model

ment and distribution system. If a deployment and distri-
bution system is present, the deactivation process could
also signal the server so that future updates for the deac-
tivated software are no longer sent to this workstation or
workspace.

Reconfigure Update -An update can be reconfig-
ured after activation. Reconfiguration often happens
through a configuration interface at runtime, but can
also be done by reconfiguring system settings that af-
fect the softwares behaviour.

For our research we have evaluated the coverage of
these process steps for a number of techniques currently
used in the field or implemented by academia. The eval-
uation shows what parts of the process model are still
uncovered, how covered process steps have been imple-
mented by the techniques, and what requirements are
imposed by these implementations.

Each of the process steps has specific requirements
and problem areas. Two process steps that are crucial
for the process model, being delivery and deployment,
are further explained in detail in Section 3. The release
and derelease steps on the vendor side have not been in-
cluded in this model. The reason for this is that in this
paper we do not focus on the processes that take place on
the side of the software vendor. At present our focus lies
on the implementation and process model of product up-

date software and we are less interested in the develop-
ment process of the software that is actually distributed.
The same holds for the channels through which the soft-
ware and requirements are communicated. In our model
we assume the presence of one vendor and one customer.
A more complex scenario is imaginable where a vendor
distributes through a software distributor or where a ven-
dor uses COTS (commercial-off-the-shelf components)
in its product, however, we abstract from such scenar-
ios because these do not add to our contribution.

2.2. A Typology for Product Updaters

In order to obtain more insight in the available prod-
uct update technology we distinguish three types of
product updaters. The typology is created because it
creates more insight into the specific available technol-
ogy and draws out the process model for evaluation of
product software update techniques. The three types are
distinguishable by looking at delivery and deployment
methods and policies, and by looking at process cover-
age.

• Package Deployment Tools -During the evalu-
ation of update tools many package deployment
tools (PDTs) were encountered. These deploy-
ment technologies are based on the concept of a



package, and on a site repository that stores in-
formation representing the state of each installed
package. A package is an archive that con-
tains the files that constitute a system together
with some meta-data describing the system. Exam-
ples of these package tools are Red Carpet, APT,
Loki-Update1, RPM-update2, Nix [2], SWUP3, and
Portage4. RPM, Portage, and Nix are the most ad-
vanced tools.

• Generic Product Updaters -Generic product up-
daters (GPUs) are updaters that completely ab-
stract from a product and attempt to be usable for
any product. Two generic product updaters that
are available commercially are InstallShield5 and
PowerUpdate6.

• Vendor Product Updaters - Vendor product up-
daters (VPUs) specifically facilitate the update pro-
cess of one product, such as Microsofts Windows
XP update, Exact Software’s Product Updater [3],
and Symantec’s LiveUpdate.

The typology described above is largely inspired by
Carzanigas grouping [4] of deployment techniques and
Ajmanis listing of update techniques [5]. One specific
technology has not yet been included in the typology, be-
ing runtime updaters, which are further discussed in Sec-
tion 4. This technology, however, can still be described
using the updater typology.

2.3. Evaluation of Update Process Coverage

In Table 1 is displayed how the evaluated update tech-
niques cover the process steps that make up the update
process model. The process coverage for update tech-
niques shows different classes of updaters and enables
identification of updaters. The process coverage also dis-
plays what areas certain techniques focus on and what
process steps need more research from both academia
and the industry.• Means that a process is completely
covered.◦ Means that the process is only partially cov-
ered. Coverage has been evaluated based on a number
of characteristics of each process step, but for the sake
of brevity we cannot go into more detail. For instance,
partial support for “send update” means that there are
means to get the update to the customer, such as a release
repository and communication channels. Full support
for “send update” means that push technology is also

1 http://www.lokigames.com/
2 http://www.kleemann.org/rpm-update/oldindex.html
3 http://swup.trustix.org/
4 http://www.gentoo.org/doc/en/portage-manual.xml
5 www.installshield.com
6 www.powerupdate.com

available. These characteristics were evaluated through
document studies, case studies, and finally by testing the
software itself.

2.4. Discussion

When looking at the process coverage of the vari-
ous techniques, there are clear distinctions between the
types. One of those distinctions is that current pack-
age deployment tools do not support any form of ven-
dor feedback. We will now discuss each type of updater.

The generic product updaters (GPUs) cover many of
the process steps. Especially in the area of licensing
and customer interaction the GPUs are strongly repre-
sented. Firstly, the GPUs have to be used by different
parties, sometimes even using different platforms, and
therefore need to provide as many different update sce-
narios as possible. Secondly, the GPUs in this evaluation
are, with the exception of the Software Dock [6], com-
mercial tools, and therefore licensing and customer in-
teraction are required. Finally, when compared to other
updaters, the GPUs have most options for vendor feed-
back, which is a commercially attractive solution for get-
ting feedback from customers.

The package deployment tools (PDTs) are tools
specifically designed to deploy and install packages
on (usually) open source based systems. These sys-
tems are often extended with external tools from
which our evaluation abstracts. The tools therefore
cover all standard process steps strongly, but in the ar-
eas of customer interaction and licensing they are
not sufficient. The reasons for this are part of the na-
ture of package deployment. Firstly, issues such as
vendor feedback are solved on another level, usu-
ally through bug reporting systems and developer com-
munities. Secondly, licensing is not an issue, since most
of the software available in the open source commu-
nity is free.

Vendor product updaters (VPUs) are generally
weaker in the areas of transferal and deployment, yet
stronger in the areas of customer interaction and li-
censing. In the area of customer interaction the VPUs
are strongly represented, because that is their ”bread
and butter”. One clear distinction between VPUs
and GPUs is that removal and rollback is not sup-
ported in most VPUs. Whereas GPUs assume that
the deployed products will be removed, VPUs as-
sume their products and updates will remain deployed
forever, which is not surprising in the case of up-
dates for a virus removal tool or security updates. VPUs
are have restricted functionality, because they have
been designed to only perform these steps for one prod-
uct and one way of vendor-customer interaction. We
see that many of the methods used in VPUs are sim-



P
ro

du
ct

N
am

e
Ty

pe
C

us
to

m
er

in
te

ra
ct

io
n

T
ra

ns
fe

ra
l

D
ep

lo
ym

en
t

Li
ce

ns
in

g

R
ec

ei
ve

In
fo

A
dv

er
tis

e
U

pd
at

e
Ve

nd
or

F
ee

db
ac

k
R

ec
ei

ve
U

pd
at

e
S

en
d

U
pd

at
e

In
st

al
l

U
pd

at
e

R
ol

lb
ac

k
R

em
ov

e
C

on
fig

ur
e

R
e-

co
nfi

gu
re

A
ct

iv
at

e
U

pd
at

e
D

ea
ct

iv
at

e

P
ow

er
U

pd
at

e
G

P
U

◦
◦

◦
•

◦
◦

•
◦

In
st

al
lS

hi
el

d
G

P
U

◦
◦

◦
•

◦
◦

•
◦

•
•

R
ed

C
ar

pe
t

G
P

U
•

•
•

•
•

•
◦

•
◦

◦
S

of
tw

ar
e

D
oc

k
G

P
U

•
•

•
•

•
•

•
•

•
F

ile
W

av
e

G
P

U
◦

•
◦

◦
◦

◦
•

•
A

P
T

P
D

T
•

◦
•

•
R

P
M

-u
pd

at
e

P
D

T
•

◦
•

•
N

ix
P

D
T

•
◦

•
•

•
•

•
S

W
U

P
P

D
T

•
◦

◦
•

P
or

ta
ge

P
D

T
◦

◦
•

◦
•

◦
•

◦
◦

Lo
ki

U
pd

at
e

V
P

U
◦

◦
•

◦
◦

•
E

xa
ct

P
U

V
P

U
◦

◦
◦

•
◦

◦
•

◦
◦

M
S

S
U

S
V

P
U

•
•

◦
•

◦
◦

◦
•

Li
ve

U
pd

at
e

V
P

U
•

•
•

◦
◦

•
•

•
Le

ge
nd

:•
F

ul
ls

up
po

rt
;◦

P
ar

tia
lS

up
po

rt
G

P
U

:G
en

er
al

pr
od

uc
tu

pd
at

er
;V

P
U

:V
en

do
r

pr
od

uc
tu

pd
at

er
;P

D
T

:P
ac

ka
ge

de
pl

oy
m

en
tt

oo
l

Table 1. Update Process Coverage

plifications of the more complex software update mod-
els.

3. Delivery and Deployment

Two steps in the proposed process model form the
core of our model, being delivery and deployment. In
this Section the process steps of delivery and deploy-
ment are further explained. The updating techniques are
then evaluated against the provided definitions.

3.1. Delivery

Delivery formats identify many characteristics of up-
daters. Some updaters, such as PDTs focus on the sole
delivery of packages, whereas GPUs attempt to support
the full myriad of delivery formats. Delivery formats af-
fect the size of updates that are delivered to customers.
The choice of delivery format therefore affects the to-
tal model of delivery, especially in an environment with
limited resources.

New configurations can be delivered to customers in
different ways. The configurations can be transferred in
the following formats:

• Packages of Components -A package of compo-
nents can be delivered to a customer. Usually these
packages first need to be unpacked, before they
can be installed and activated. Examples of tech-
niques that use packages are RPM-update, APT,
DeployMe, Red Carpet, Portage, and Nix.

• Components -A separate component consists of a
batch of files.

• Files - The simplest form of transfer data are sepa-
rate files. These files can be licenses, configuration
settings, and binaries.

• File deltas - Differences between a customer site
configuration and a vendor site configuration can
be expressed as file deltas. File deltas can be trans-
ferred using efficient algorithms such as Rsync [7].
A file delta is a listing of differences between two
file versions, with which any of the two versions
can generate the other version. Sending just the dif-
ference between files is more efficient than sending
the complete file.

Without some pre-processing at the customer site,
each of these formats would place some restrictions on
the final deployment environment. However, when cor-
rectly assembled before deployment these formats are
interchangeable. For example, file deltas for a complete
component can be used to generate the new component.
The chosen delivery format(s) affect different factors,
such as the size of updates and the deployment method,



and together with the deployment issues and deployment
policies uniquely identify an updater. Service packs are
similar to component packages in our delivery formats.

3.2. Deployment

The process of installing updates introduces most
complexity for software vendors. The software archi-
tecture of a system determines the extensibility of the
system, whether the update can occur at runtime or not,
and whether there are scripting tools available to per-
form certain tasks (such asMake). Finally, dependen-
cies need to be checked during deployment, such as de-
pendencies on the operating system, the presence of cer-
tain components, the compatibility between the update
and the current customer configuration, and many oth-
ers.

To deploy or install the delivered software, a choice
for an appropriate deployment method needs to be made.
Some of these methods are:

• Overwrite - The deployment method employed
most often by software vendors is the method of
overwriting the application files, license files, or
configuration settings. The solution bases itself on
the assumption that the deployed set of files or
components does not change over time due to exter-
nal forces. There is no way to rollback an overwrite,
unless the customer is using a versioned file sys-
tem. One example of an overwriting update method
is the Windows Updater which will first unregister
a dll, overwrite it with a newer version, and regis-
ter it again. Another example is the Exact Software
Product Updater, which compares all the versions
of the locally available files to the available files
on the release site. When there are differences, the
product updater overwrites only the different files
on the customer site.

• Plug-in - Plug-ins are often used to create exten-
sible configurations. The method of using Plug-in
architectures supports the extension of a configu-
ration by addition and removal of unique Plug-ins.
Other Plug-in [8] can handle different versions of
the same Plug-in as well.

• Deinstall/Reinstall -For many applications an up-
date constitutes the uninstallation of all previous in-
stalled versions of that application7.

In the open source community applications are often
delivered and deployed as source distributions. These
source distributions first need to be compiled, which can
be seen as a separate step in the deployment process.

7 Examples are: NullSoft Winamp, LavaSoft Ad-Aware, etc

Well known systems that assist with source distributions
are Maak [9] and RTools [10]. It should be noted that the
three deployment methods mentioned above can just as
well be applied to source distributions.

Other issues that deal with deployment are the abil-
ity of a technique to provide scripting, to do dependency
analysis, to perform integrity checking, to deploy multi-
ple versions of the same component, and to enable push
technology. Each of these abilities puts specific require-
ments on the deployment and implementation architec-
ture.

Scripting is used to perform post deployment con-
figuration on an update. Such scripts can be used to
execute, activate, configure, compile and build an up-
date. Scripts can be shell scripts, which are often used
by package deployment tools, but also a specifically de-
signed language that registers or unregisters Plug-ins. In
the process model presented in Figure 1 we did not yet
introduce verification of an update, such as synchroniza-
tion checks, signatures, and completeness checkers. In
each of the three final states, a customer should be able
to perform verification steps.

Dependency analysis is a much studied area of de-
ployment [11] and aims to provide a complete and con-
sistent set of components. To achieve this goal many
problems need to be tackled, such as support for multi-
ple versions of components, automatic resolution of de-
pendencies, and explicit management of the dependen-
cies. One specific ability of dependency checking that
places extra requirements on the deployment architec-
ture is the support for multiple versions of a component.
Multiple version support is therefore part of the eval-
uation process model and is a technology that enables
switching between configurations and having two com-
ponents depend on different versions of another compo-
nent. Finally, push technology puts extra requirements
on the implementation of the messaging architecture of
an updater. A customer needs to be able to receive up-
dates automatically and the vendor needs to be aware of
all the customer workspaces.

3.3. Evaluation of Delivery and Deployment

The evaluation of the following techniques includes
more specific definitions of the delivery and deployment
process steps than the evaluation done by Carzaniga et
al [12], because the definitions need to be made more
explicit. The evaluation shows that updaters grouped
by just the process coverage do not distinguish subtle
yet important differences in delivery formats and de-
ployment policies. These differences have been listed
here, and provide a more detailed and defined evaluation
framework. To obtain the detailed framework, we have
focused on delivery and deployment. Delivery and de-



ployment are more complex than the other process steps,
because there are more alternatives to efficiently achieve
the goals that are part of these process steps.

The evaluation in Table 2 includes a description of
what formats of delivery are used by each updater. The
evaluation also describes what deployment methods and
architectures are supported by each updater. Finally,
some issues that uniquely identify an update technique
are evaluated. The criteria for evaluation are similar to
those for Table 1.

From the evaluation of the updaters against the de-
scriptions of delivery and deployment we deduce the
following. To begin with, the generic product updaters
(GPUs) support all different delivery formats. Especially
the two most advanced tools in this category, PowerUp-
date and InstallShield, are the only tools able to deal
with all formats of delivery. These are also the only tools
that are able to send across file deltas, instead of com-
plete files. The GPUs are not well represented in the de-
ployment feature area, because these features are spe-
cific to deployment environments, from which the GPUs
wish to abstract. However, GPUs are quite able when it
comes to commercially interesting push technology, es-
pecially when compared to the other updater categories.
GPUs generally do not make use of Plug-in technol-
ogy, which can be explained by the fact that Plug-ins are
largely dependent on the Plug-in software architecture.
GPUs are strongly represented for the feature of script-
ing since it is required to perform post installation con-
figuration steps.

The package deployment tools (PDTs) support only
package deployment and generally only support dein-
stallation and reinstallation to update a package. Script-
ing and dependency analysis are always present in
package deployment systems, to enable post deploy-
ment configuration and completeness checking with
other components. PDTs do not use push technol-
ogy, which can be explained by the fact that (open
source) users of these PDTs often do not want oth-
ers to be in charge of their software. PDTs are strongly
represented in the areas of dependency analysis and in-
tegrity checking. The dependency analysis is required
for PDTs because packages have many dependency re-
lationships with other packages. Automatic resolution
of these dependencies therefore is a valuable feature. In-
tegrity checking prevents instability and ensures authen-
ticity.

Finally, the Vendor product updaters (VPUs) all de-
pend on files as the primary format of transfer to the cus-
tomer. These files generally overwrite the previous in-
stallation, except when these files are special Plug-ins,
such as virus definitions for LiveUpdate or unregistered
dlls for Microsoft SUS. The VPUs do not incorporate
much dependency analysis, scripting, or integrity check-

ing. Contrary to the other update types, VPUs often do
allow for post deployment configuration, either built into
the updater or the application. Finally, the VPUs do not
make use of push technology.

4. Discussion and Future Work

The aim of this paper is to show that there is no prod-
uct updater that provides all functionalities required by
software vendors. On the other hand the development of
VPUs is not an efficient solution, since each software
vendor is implementing a subset of the process steps
shown in our process model. It is surprising that no GPU
has yet been adopted universally by the industry. One of
the reasons for presenting the process model in Figure 1
and the typology is to redefine the requirements on and
re-establish the need for such GPUs.

4.1. Typology

The types presented in the typology all have specific
requirements and functionalities. To begin with GPUs
are generally commercial tools focused on deploying
software on Windows based systems, with the exception
of PowerUpdate, which is now focusing on multi plat-
form deployment.

Secondly, the discussed PDTs have some interesting
characteristics. Nix, for instance, is a “stop the world”
system, whereas Portage and RPM simply extend cur-
rent functionality. Nix, however, stores components in
isolation from each other in a part of the file system
called the store, where each component has a globally
unique name that enables pointer scanning. The con-
struction of component configurations and the result-
ing closures are described using Fix store expressions.
Safe deployment is achieved by distributing these ex-
pressions, along with all components in the store refer-
enced by them.

Another interesting PDT is Portage. Portage, as most
other package management system, can resolve depen-
dencies; but one feature that makes it different is the
fact that it also supports conditional dependencies. By
changing one configuration variable in a Portage config-
uration file it can disable optional support (and thus the
need to depend on it) for particular features or libraries at
compile time. In addition Portage enables multiple ver-
sions of packages installed simultaneously to satisfy the
demands of other packages. The traditional approach to
this problem has been to treat different versions of the
same package as different packages with slightly differ-
ent names, such as with RPM and APT.

Thirdly, there are advantages and disadvantages
to VPUs. To begin with there are commercial advan-
tages to VPUs. An important reason for using VPUs



Delivery Deployment Deployment
Format Policy Issues

Ty
pe

P
ac

ka
ge

C
om

po
ne

nt

F
ile

s

F
ile

de
lta

O
ve

rw
rit

e

P
lu

g-
in

D
e-

R
ei

ns
ta

ll

S
cr

ip
tin

g

D
ep

en
de

nc
y

A
na

ly
si

s

In
te

gr
ity

C
he

ck
in

g

M
ul

tip
le

Ve
rs

io
ns

P
us

h

E
nv

iro
nm

en
tC

he
ck

in
g

PowerUpdate GPU • • • • • • • • •
InstallShield GPU • • • • • • • •
Red Carpet GPU • • • • • • • ◦ ◦
Software Dock GPU • • • • • • • ◦ ◦ • ◦
FileWave GPU • • • ◦
APT PDT • • • • •
RPMupdate PDT • • • • • ◦
Nix PDT • • • • • • • ◦
SWUP PDT • • • •
Portage PDT • • • • • • ◦
Loki Update VPU • • • ◦
Exact PU VPU • • ◦
Windows XP SUS VPU • • • ◦ ◦ ◦
LiveUpdate VPU • • • •

Legend:• Full support;◦ Partial Support
GPU: General product updater; VPU: Vendor product updater;

PDT: Package deployment tool

Table 2. Delivery and Deployment Evaluation

instead of GPUs for software vendors is that they them-
selves are responsible for the update processes of their
products. For Norton Anti-Virus for example, Norton
is completely responsible for security procedures, net-
work management, and all other aspects having to do
with product updating. Often VPUs are a cheap so-
lution over GPUs, however, VPUs can only cover a
small problem area compared to general product up-
daters and the complexity of the software updating
process grows as requirements increase. When require-
ments are stated for the product updater to support
different versions, customers, customizations, and li-
censes, it soon becomes apparent to the software ven-
dor that specialized knowledge is required. The limited
availability of such tools and the cost of implement-
ing a GPU, have lead many software vendors to develop
their own VPUs and essentially reinvent the wheel. An-
other disadvantage is that the updaters commonly per-
form destructive updates. Microsoft Software Update
Services, for instance, overwrites dlls, without any roll-
back functionality.

A category of update technology that is not specified
in this paper is runtime updating, because run-time up-
dating is not widely applied for software products yet.

Much work has been done in the areas of runtime and
dynamic updating [13]. Providing a service or system
that is available 24 hours a day is a commercially attrac-
tive solution to many problems. These systems of course
also evolve with time, thereby requiring some extensible
mechanism. We shall not list these mechanisms here, but
Ajmani has created a list of mechanisms and component
frameworks [5]. There are two important factors to con-
sider when looking at runtime updating, being continu-
ity and state transfer [14] [15]. An interesting technique,
designed by Ajmani and Liskov [8], attempts to support
many different versions of one component at runtime,
thereby enabling runtime extension. Runtime updaters,
however, are generally focused around one technology,
such as CORBA or J2EE, and do not focus on any other
process modules than transferal and deployment. Sim-
ple versions of these technologies are often used in other
product updaters, such as Microsoft SUS or LiveUpdate.

4.2. Delivery and Deployment

The discussed features of the deployment process in-
troduce many questions about software updating tech-
niques. To begin with, the file delta format and push



technology is not (yet) strongly represented among the
evaluated software updaters. The absence of the file
delta format can be explained by the fact that band-
width and disk space are cheap nowadays and therefore
the time and money invested in such technology is not
profitable. The fact that push technology is hardly avail-
able can be explained by the type of software evaluated.
Most of the techniques mentioned in this paper are prod-
uct updaters and customers are more interested in hav-
ing a working product than a product that is acutely
and always up to date. Secondly, multiple versions are
only supported by technologies from academia (soft-
ware dock, Nix) and Portage. The complexity of dealing
with multiple versions of the same component, which
is crosscutting through a system, has not received suf-
ficient attention. Finally, practically all tools perform
some deployment environment checking, whether the
tool checks for diskspace, such as the Exact Product Up-
dater, or provides an advanced customizable checking
mechanism, such as the PowerUpdate and InstallShield
GPUs.

4.3. Future Work

One requirement that has as of yet not been discussed
is what Carzaniga et al [12] refer to as site abstraction,
the ability to abstract from the vendor-customer model
and introduce one or more redistribution sites into the
model. Carzaniga et al already refer to a redistribution
tool, the Interdock, in their model, yet no implementa-
tion has yet been created. An open research issue is to
redefine such an architecture where (re)distribution of
components, files, licenses, and configuration settings
are modelled.

The aim of the issues listed in this paper is to explic-
itly define software update problems experienced in the
field. One striking conclusion that can be drawn from
the evaluation is that re-configuration is highly under-
estimated for product updating. Another problem is that
many of the requirements of software vendors for prod-
uct updaters are not yet satisfied by GPUs.

The listed techniques can support the industry and
can be inspirational for those designing their own tech-
nique. The presented material paves the way to build a
generally applicable product updater. However, many of
the problems mentioned in this paper have already been
solved by tools such as Nix and the Software Dock. Our
plan is to reuse some of these techniques and build a
component framework to support all aspects of the soft-
ware update process. Such a tool can contribute to the
industry and open source community as a plaftform for
development of update techniques and provide a stan-
dard architecture for such a tool.

4.4. Related Work

Carzaniga et al [12] described some of the techniques
mentioned in this article, however, recent developments
have lead to new insights and techniques. For the eval-
uation a list of techniques focused on runtime updat-
ing from Ajmani [5] has been used. On the lower lev-
els of component update architectures, Clegg [16] pro-
vides an evaluation of component update methods for
implementers of run-time updating.

4.5. Conclusion

The contribution of this article is threefold. To begin
with we present a process model that represents the soft-
ware update process and uncovers the areas of deployed
software evolution that require more research. Also, we
provide a typology that classifies software updaters. Fi-
nally, we use the process model and typology to com-
pare current update tools.

References

[1] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Software
Release and Deployment at Exact, A Case Study Report.”
Technical Report CWI, 2004.

[2] E. Dolstra, E. Visser, and M. de Jonge, “Imposing a
memory management discipline on software deploy-
ment,” in IEEE Workshop on Software Engineering
(ICSE’04). IEEE, 2004.

[3] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Integrated
SCM/PDM/CRM and Delivery of Software Products to
160.000 Customers,” inTechnical Report CWI, sumbmit-
ted for publication, 2005.

[4] R. S. Hall, D. Heimbigner, and A. L. Wolf, “Evaluating
software deployment languages and schema,” inICSM,
1998, pp. 177–196.

[5] S. Ajmani, “A review of software upgrade techniques for
distributed systems,” Aug. 2002.

[6] R. Hall, D. Heimbigner, and A. L. Wolf, “A cooperative
approach to support software deployment using the soft-
ware dock,” inInternational Conference on Software En-
gineering, 1999, pp. 174–183.

[7] A. Tridgell, “Efficient algorithms for sorting and syn-
chronization,” Ph.D. dissertation, 1999.

[8] S. Ajmani, “Automatic software upgrades for distributed
systems,” Apr. 2003, ph.D. thesis proposal.

[9] E. Dolstra, “Integrating software construction and soft-
ware deployment,” in11th International Workshop on
Software Configuration Management (SCM-11), ser.
Lecture Notes in Computer Science, B. Westfechtel, Ed.,
vol. 2649. Portland, Oregon, USA: Springer-Verlag,
May 2003, pp. 102–117.

[10] H. E. Harrison, S. P. Schaefer, and T. S. Yoo, “Rtools:
Tools for software management in a distributed comput-
ing environment,” Summer 1988, pp. 85–93.



[11] M. Larsson and I. Crnkovic, “Configuration management
for component-based systems,” inProc. Int. Conf. on
Software Engineering (ICSE), 2001.

[12] A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek,
D. Heimbigner, and A. Wolf, “A characterization frame-
work for software deployment technologies,” 1998.

[13] M. W. Hicks, J. T. Moore, and S. Nettles, “Dynamic soft-
ware updating,” inSIGPLAN Conference on Program-
ming Language Design and Implementation, 2001, pp.
13–23.

[14] V. Mencl, Z. Petrova, and F. Plasil, “Update description
language,” inWeek of Doctoral Students WDS 99, 1999.

[15] R. Bialek and E. Jul, “A framework for evolutionary,
dynamically updatable, component-based systems,” in
The 24th IEEE International Conference on Distributed
Computing Systems Workshops, Hachioji, Tokyo, Japan,
March 23-24 2004, pp. 326–331.

[16] S. Clegg, “Msc independent study: Evolution in extensi-
ble component-based systems,” 2003.

Acknowledgment

We would like to thank Eelco Dolstra for our fruit-
ful discussions on configuration settings. We would also
like to thank Sameer Ajmani for providing an unpub-
lished list of update techniques on-line and Tijs van der
Storm for extensively reviewing the paper. Finally, we
would like to thank Arie van Deursen for his helpful re-
view.

Appendix: Short Description of Update
Technologies Used

PowerUpdate -PowerUpdate v2.0 is a commercial multi-
platform software updating and delivery tool designed to main-
tain software applications. PowerUpdate can be integrated into
integrated development environments and supports features
such as environment analysis and cross platform deployment.
PowerUpdate can also check integrity of products on the cus-
tomer side.

InstallShield - InstallShield (update service v3.0) is
PowerUpdate’s largest competitor and differs from PowerUp-
date in the facts that it is only suitable for deployment on
Microsoft based environments and cannot do integrity check-
ing.

Red Carpet - Red Carpet v2.2.3 is a software deployment
tool for Linux. Red Carpet works through installtion channels
that can be used to communicate and deploy updates at cus-
tomers. Red Carpet supports automatic dependency and con-
flict resolution. One important feature of Red Carpet is that
they provide Ximian, which is basically a server that contains
many different packages that can be deployed for free.

Software Dock -The Software Dock (v4.0), a project that
started at the University of Colorado, is a system of loosely
coupled, cooperating, distributed components that are bound
together by a wide area messaging and event system. The com-
ponents include field docks for maintaining site specific con-
figuration information by consumers, release docks for manag-
ing the configuration and release of software systems by pro-
ducers, and a variety of agents for automating the deployment
process.

FileWave - FileWave v4.5 is quite similar to Red Carpet
with a lot less features. Mostly, FileWave focuses on deploy-
ment of applications on Mac OS X environments, though re-
cently they have started to support Microsoft based environ-
ments as well.

APT - The Advaced Package Tool (v0.5.4) installs pack-
ages and manages dependencies automatically for Debian en-
vironments. APT has been implemented for Red Hat by Con-
nectiva.

RPMupdate - RPM (v9.0) is the Red Hat Package Man-
ager.

Nix - Nix (v0.6.1) is a system for software deployment de-
veloped by the Trace research group. It supports the creation
and distribution of software packages, as well as the installa-
tion and subsequent management of these on target machines.

SWUP - Swup (v1.2) is short for “Software Updater” and
can automatically update packages together withcron, inde-
pendent of the package manager.

Portage -Portage (v2.0) is the package manager for Gen-
too Linux. Portage has some slight advantages over the other
package deployment tools, such as conditional dependencies.

Loki Update - The Loki Update Tool (v1.0.10) is a small
tool written to support the most trivial tasks of updating, such
as downloading and installing.

Exact PU - The Exact Software Product Updater (v2004)
provides the mechanisms for delivering packages and updates
to the customer. When the product updater is run at the cus-
tomer site, it needs to be provided with an installation loca-
tion (CD ROM or the Web), a license file and a local installa-
tion that is updated.

Microsoft SUS - Microsoft Software Update Ser-
vices (v1.0) is used for Microsoft Office Update and Win-
dows Update to deliver service packs, bug fixes, and security
updates to customers. The updater works mainly at run-
time.

LiveUpdate - Symantec provides different types of pro-
tection systems for computers connected through a network.
Symantecs Antivirus and Firewall software are widely used,
and are updated through LiveUpdate (v2.0). Our evaluation
also includes the license tool LiveSubscription, because it cov-
ers a relevant part of the update process.


