
Scheduling Concurrent RPCs in the Globe Location Service

Gerco Ballintijn, Magnus Sandberg, Maarten van Steen

Vrije Universiteit, Department of Mathematics and Computer Science,
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

gerco,steen @cs.vu.nl

Keywords: concurrent RPC, distributed objects, wide-area computing

Abstract

Globe is a wide-area distributed system in which an ob-
ject can be located through its location-independent iden-
tifier. This is done by means of a worldwide location ser-
vice. In contrast to comparable services, the approach that
is followed in Globe allows objects to be highly mobile, repli-
cated, or physically distributed. In addition, our algorithms
adapt dynamically to an object’s behavior, resulting in an ef-
ficient and above all, scalable approach.

The algorithms for updating and looking up an object’s
location are expressed as high-level operations on a world-
wide search tree. We have designed and implemented a mid-
dleware layer providing all the necessary network communi-
cation. In this paper, we show that such a layer hardly intro-
duces any additional overhead. The important consequence
is that our location service can be designed and implemented
at a high level of abstraction. Compared to the design and
implementation of comparable worldwide services, this ap-
proach is quite unique.

1 The Globe Location Service

1.1 Background

In Globe, distributed objects provide services to
processes. To contact an object, a process first re-
trieves its object handle from a name server or by other
means. An object handle uniquely identifies an ob-
ject in Globe. The process then asks the Globe loca-
tion service to provide it with the object’s contact ad-
dresses. Every object in Globe has one or more contact
addresses. These addresses specify how and where a
process can contact an object. For example, the con-
tact address of a WWW server object can specify that
a process should use the HTTP protocol at address
130.37.24.11 port 80.

The reason for separating object handles and con-
tact addresses is that they have different characteris-
tics and uses. These differences become clear when we
look at migrating and replicated objects. When an ob-
ject migrates, its object handle does not change as it

still refers to the same object. However, contact ad-
dresses do change when an object migrates, thus re-
flecting the object’s new location. Likewise, when an
object is replicated, its object handle is used to refer
to all active copies, since they are all functionally the
same. Each replica, however, has its own contact ad-
dress.

By separating object handles and contact addresses,
we are able to implement migrating and replicated ob-
jects. It also allows us to support physically distributed
objects [3]. We do, however, need a way to find the
contact addresses of an object. The location service
provides this service. It maps an object handle to one
or more contact addresses.

The Globe location service provides three basic op-
erations: insert, delete and lookup. The insert oper-
ation informs the location service that an object can
be contacted at a (new) contact address. The delete
operation informs it that an object can no longer be
contacted at a certain contact address. The lookup op-
eration searches for contact addresses of a designated
object. The location service provides only a mapping
from object handle to contact address, not vice versa.
Given the fact that the Globe location service works on
a global scale, it should be able to handle large num-
bers of update and lookup requests, and deal gracefully
with network partitions and long network delays.

In this paper we are mainly interested in the speed
of propagation of modifications in the location service.
For example, how long does it take for a contact ad-
dress to be visible through out the system after it has
been inserted?

1.2 The logical structure

The Globe location service partitions a worldwide
network in disjunct basic regions. A contact address is
always situated into exactly one basic region. Regions
are recursively combined into larger regions, ending in
one region covering the whole network, as shown in
Fig. 1. Every region has an associated directory node,



which stores information about the object handles in its
region. These nodes together form a distributed search
tree, which represents the hierarchical partitioning of
the network. The directory nodes of the basic regions
are the leaf nodes of the tree. The tree structure is in-
ternal to the location service and not visible to its users.
A basic region is expected to have the size of a depart-
mental LAN.

Figure 1: Hierarchical region partitioning

A directory node associates a contact record with
every object handle it knows. A contact record stores
information about the object handle. In the normal
case, leaf nodes store contact addresses and higher
level nodes store forwarding pointers to a leaf node.
A forwarding pointer indicates that the contact address
may be found in the child’s region (subtree). By fol-
lowing a path of forwarding pointers from the root di-
rectory node, one can find the directory node where a
contact address is stored.

When an object migrates between basic regions,
contact addresses need to move from one leaf node to
another, and consequently forwarding pointers need to
be updated. When an object migrates often, this can
lead to a lot of work. However, when the contact ad-
dresses are stored at a higher level in the tree (repre-
senting the larger region in which the migration takes
place), the placement of the contact addresses can re-
main the same, thus preventing updates on the for-
warding pointers. The contact addresses themselves
still need to be updated.

When a process wants to know an object’s con-
tact addresses, it starts a lookup operation at the leaf
node of its basic region. This request is propagated
up the tree, searching in ever increasing regions, un-
til a nonempty contact record is found, i.e. a record
that contains either a contact address or a forwarding
pointer. Then, a path of forwarding pointers starting
in this record is followed until a contact record with
contact addresses is found. The design of an efficient
lookup algorithm is currently an important subject of
our research. It will not be further discussed in this pa-
per. Likewise, we omit any discussion on scalability
and optimizations. The interested reader is referred to
[4] for further details.

1.3 Update Operations

The insert and delete operations are referred to as
update operations. They have two parameters, an ob-
ject handle and a contact address. The contact address
is to be inserted in or deleted from the object handle’s
contact record.

Figure 2: The insert operation

An insert operation starts at the leaf node of the ba-
sic region to which the contact address belongs. In the
normal case the contact address is stored in the leaf
node and a path of forwarding pointers is built by re-
cursively inserting a forwarding pointer at every node
starting at the leaf. The insert operation is completed
as soon as a node is reached that already had a forward-
ing pointer, or otherwise at the root. This is illustrated
in Fig. 2.

A delete operation starts at the leaf node of the re-
gion where the contact address was inserted. Nor-
mally, a delete operation deletes the contact address at
a leaf node. If the leaf node no longer contains contact
addresses or forwarding pointers, the path of forward-
ing pointers to this node is recursively removed.

The communication pattern of each update opera-
tion is basically the same. It first reads the contact
record to decide whether it should update the record or
not. The operation then generally forwards the update
request to the parent and is suspended until the par-
ent responds. Depending on the parent’s response, the
contact record is then either updated or left in its orig-
inal state. This can be expressed as shown in Fig. 3.



operation update oid : OID addr : Address is
if perform update here then

— First check with parent if update is allowed. As a side effect,
— the parent possibly also updates its own local contact record.
let response : call update oid addr at parent;
if response OK then

— Parent agrees with update at this node
perform update;
if caller is allowed to continue update

then return OK;
else return DONE;

fi
else

— Update was completed at a higher level. This level
— and lower ones are not allowed to perform update locally.
return DONE;

fi
else

— Simply forward the update request to the parent.
call update oid addr at parent;
return DONE

fi
endupdate

Figure 3: Outline of a general update operation.

It is important that update operations do not violate
the consistency of the tree. Consistency is formulated
on a per-object basis. In particular, we say that the tree
is globally consistent for a specific object O, if it con-
forms to the following two predicates:

Pointer The contact record for O at a node N stores
a forwarding pointer to a child node of N if and
only if the contact record for O at that child node
is nonempty.

Exclusion A contact record for O at a node N con-
tains a forwarding pointer to child C only if it does
not contain a contact address for the region repre-
sented by C.

These predicates imply that a contact record at a leaf
node can never contain a forwarding pointer. Also, if a
contact record contains an address for object O on be-
half of its child C, then all directory nodes in the sub-
tree rooted at C will have empty contact records for O.

To guarantee exclusive access to a contact record,
a node would normally have to deny successive invo-
cations until the current operation has completed. Ef-
fectively, this means that an update request issued at
a leaf node cannot be handled before the previous one
has been processed at every node in that request’s in-
vocation chain, possibly up to the root of the tree. For
a wide-area system, this strict sequential behavior is
unacceptable. Instead, what we need is a mechanism
that will allow us to schedule and execute an operation
before the previous one has completed, but that would
lead to the same results as with strict sequential invoca-
tions. In particular, we want to continue with the next
operation as soon as the current one is waiting for a re-
sponse from the parent. A successive operation should
thus be able to base its decisions on tentative data in

such a way that the tree eventually becomes globally
consistent. Operations on tentative data that lead to
eventual global consistency is accomplished through
view series.

1.4 Views and View Series

A view on a variable v is an expression formulated
in terms of v that can be evaluated, but which leaves the
original value of v unaffected. A view on a variable v
can be evaluated only when it has been appended to a
view series associated with v. The value of a view se-
ries of v results from evaluating the views in that series
in the order that they were appended, leading to a ten-
tative value of v. To illustrate, consider the following
example (we use the notation “v S” to denote that the
series S is associated to v).

let x : Integer 4;
let vseries : view series of x;
append view self 1 to vseries;
append view self 2 to vseries;
— vseries = 4 x 1 2 x , with value 10

We declare an integer variable x and associated view
series vseries. The pseudo-variable self points to the
variable for which the corresponding view series is
defined, in this case x. In the example, the viewed
value of vseries is always 2 x 1 regardless how x
is changed. The value of a view series is obtained by
taking the actual value of the associated variable and
evaluating all view expressions.

The view at the head of a view series, i.e. the least
recently appended one, can be applied by evaluating
its expression and changing the value of the associated
variable accordingly. The view is then removed from
the view series. A view can also be directly removed,
i.e. without applying it.

To properly serialize concurrent updates, we asso-
ciate a view series with each contact record. Each op-
eration first appends a view corresponding to the up-
date it wants to make, so that the contact record is left
in a tentative state, as if the update were completed.
When the parent responds, the operation continues by
either applying the appended view (i.e., when the up-
date at the current node succeeded so that the view
can be turned into authoritative data), or removing the
view (in the case the parent did not permit the update).
While waiting for the parent to respond, the next oper-
ation is scheduled, which in turn is executed according
to the tentative state of the contact record. This leads
to the adaptation shown in Fig. 4.

We demand that operations are invoked at the par-
ent in the same order as called by a child. Operations
called by different children may be invoked in an ar-
bitrary order. Furthermore, an invoked operation is
assumed to be executed exclusively and nonpreemp-
tively until suspended on a call primitive, or until the



operation update oid : OID addr : Address is
if perform update here then

append view update to contact record;
let response : call update oid addr at parent;
if response OK then

apply view to contact record;
if caller is allowed to continue update

then return OK;
else return DONE;

fi
else

remove view from contact record;
return DONE;

fi
else

call update oid addr at parent;
return DONE

fi
endupdate

Figure 4: Outline of a general update operation using view
series.

operation completes. The execution at the caller’s side
continues in the order of the completion of the called
operation at the parent. How these semantics are im-
plemented is described next. Details on our update al-
gorithms can be found in [2].

2 RPC Design Issues

Our sequential communication model suggests the
use of RPCs [1]. Note that in our algorithms this leads
to series of chained RPCs from leaf to root node. A
leaf node has to wait until the chained RPCs are com-
pleted before it can finish. Race conditions can occur
when concurrent invocations try to modify the same
local contact record. This can be avoided by making
update operations atomic.

As we have pointed out, the combination of mutual
exclusion and chained RPCs presents a problem: in-
voking an RPC while retaining exclusive access to a
contact record leads to the record being inaccessible
until the nodes in the chained RPCs finish their opera-
tion. We would thus like to have concurrent, but serial-
ized RPCs. To this end, we have designed and imple-
mented a separate scheduling layer that provides con-
current RPCs, but which serializes calls to other nodes.
Clearly, this layer introduces an additional overhead.
We are interested whether this overhead is justified by
the intended gains, namely a controlled concurrency of
RPCs allowing us to keep our update operations in the
location service relatively simple.

The rest of this section describes and analyzes the
sequential and concurrent RPC system, and ends with
a comparison between the two.

2.1 RPC Analysis

In the analysis we are interested in the propagation
speed of modifications. We want to know how long

it takes for m update requests to finish. To provide
us with an upper bound, we use a worst case scenario
where a contact record at the root of the tree needs
to be modified, resulting in a call chain from leaf to
root. This scenario provides the most work and the
most communication overhead.

To simplify matters, we focus on providing only an
upper bound. We show that we can establish signifi-
cant improvements by using concurrent RPCs. A more
detailed analysis is deferred to a forthcoming paper.

In the analysis the following variables are used.

tdelay time spent from issuing first request to receiving
reply from the last request.

tnode time spent in a node doing the work for a request.

tlink delay between a child node sending a request
message and message reception at its parent,
combined with the delay between the parent node
sending a reply message and message reception at
the child node (time spent on the ‘wire’).

For simplicity we assume that the network delays
are constant as well as the time it takes to do the work
at a node. We also assume that the underlying commu-
nication layer provides reliable communication.

The tree is of height n and there are m requests is-
sued.

2.2 Sequential RPC

A request issued at a leaf node, leads in our worst
case scenario to a chain of RPCs that have to cross n
1 links. This gives us a total latency of n tnode n
1 tlink. Since a new request is scheduled when the
preceding one finishes, this delay is also the delay for
the next request to be scheduled. Therefore the total
delay is:

tdelay m n tnode n 1 tlink

2.3 Concurrent RPC

To introduce concurrency, we make a distinction in
the location service algorithms between tentative and
authoritative data. Tentative data is data created by
an operation for which no reply message has yet been
received, i.e. the call is still waiting for a reply from
the parent. Authoritative data has been fully acknowl-
edged by the parent.

In this model a new request is scheduled as soon as
the current request blocks on an RPC. This allows a
new request to be started on this node, while the cur-
rent request is started at the parent.

The concurrent RPC system guarantees the follow-
ing:

Request messages are handled in the order they
are sent.



Reply messages are handled in the order that their
associated request was sent.

This implies that a series of blocked RPCs return in the
same order they blocked. This way serialized RPC se-
mantics can be maintained.

In the concurrent RPC system, RPC requests are
handled independently, except that ordering is main-
tained. If we furthermore ignore that requests and
replies are interleaved at a single node, the last request
returns after:

tdelay m 1
1
2

tnode n tnode n 1 tlink

The term 1
2 tnode reflects the delay between two

consecutive requests issued at a leaf node. The last two
terms correspond to the total latency as the result of
propagating a request to the root of the tree, and return-
ing an acknowledgment.

2.4 Comparison

By comparing the two delays, we can see that in the
sequential case every new RPC adds n tnode n
1 tlink units to the delay, and in the concurrent case
1
2 tnode. Considering that in a global network tnode

tlink, we have gained a lot with this scheduling. This
assumption should, however, be validated by measure-
ments.

A big problem with sequential RPCs is that pending
requests cannot be handled during network partitions,
not even in the connected subtree. This happens be-
cause a leaf node has to receive a reply message for its
current call before it can send a new request message.
The system thus has to wait until the network is recon-
nected before it can continue. This is not an acceptable
situation in a distributed system. Concurrent RPCs do
not have this problem. The system keeps on process-
ing requests, since a new operation is started as soon
as the current does an RPC.

Note that the effect of an update operation is imme-
diately visible as tentative data in the subtree rooted at
the node where the request is being processed.

3 RPC Implementation

In the current version of the Globe location service,
every directory node in the tree is a separately run-
ning program. A directory node knows the contact ad-
dresses of its parent and child nodes by means of con-
figuration files.

A directory node consists of three layers as depicted
in Fig. 5. The upper layer is the application layer.
It implements the update and lookup algorithms and
their associated data structures. The middle layer is
the scheduling layer, which is responsible for the RPC
scheduling. It is fully described in the rest of this

1

9

Communication

layer
Application

Scheduling

layer

To Child
To Parent

73

2 6 8

5

4

layer

Request queue Reply queue

Figure 5: Flow of control during an RPC

section. The lower layer is the communication layer
which provides a convenient communication interface
for reliable message streams. Its implementation of-
fers an asynchronous mode of communication, with a
nonblocking message send primitive and a callback for
notification of message arrival.

The scheduling layer schedules the threads that per-
form the operations in the location service. It imple-
ments the scheduling policy required for concurrent
RPCs. It associates two thread queues with every con-
tact record: the request queue, which queues threads
that are ready to handle an incoming RPC request, and
the reply queue, which queues threads that are blocked
on an RPC. The scheduling layer and its use of the two
queues can best be explained by following what hap-
pens when an RPC request is handled. (see Fig. 5)

1. When a request message arrives at a node, the
communication layer calls a callback function to
notify the scheduling layer. The scheduling layer
then creates a thread to handle the request.

2. The thread first appends itself to the request queue
and blocks. It remains blocked until it is at the
head of the queue and no other thread has access
to the local contact record.

3. When the thread unblocks, it starts running the
location service code in the application layer. It
continues until it needs to perform an RPC to the
parent node.

4. At that point, the scheduling layer blocks the
thread and adds it to the reply queue. Since the
thread is now blocked, new threads can be sched-
uled to access the contact record.

5. The scheduling layer calls the communication
layer to asynchronously send the RPC request
message to the parent.



6. As soon as the parent replies, the thread, which
is still blocked in the reply queue, is marked as
runnable. However, the thread remains blocked
until it is at the head of the reply queue. At that
point it can be rescheduled provided that no other
threads have access to the local contact record.

7. The thread then continues running the code in the
application layer.

8. When the request is finished, the scheduling layer
saves the return value of the routine which han-
dled the request and destroys the thread.

9. It then calls the communication layer to asyn-
chronously send the reply message containing the
return value of the routine to the child node.

4 Measurements

For our measurements, we used a tree with four
nodes, as shown in Fig. 6.

Level 2 in Geneva

Level 3 in Erlangen

Root in Amsterdam

Leaf in Amsterdam
Figure 6: Measurement setup

To use the communication delays of a real dis-
tributed location service, the measurement setup com-
prised three geographically distant sites. We used sites
in Erlangen, Geneva and Amsterdam. The Erlangen
and Geneva sites each had one node, while the Ams-
terdam site had two.

The total delay time was measured using different
number of requests. The current implementation can
only handle up to approximately 130 concurrent re-
quest due to operating system constraints.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

D
el

ay
 in

 S
ec

on
ds

Number of Requests

Sequential
Concurrent

Figure 7: Measurement results

As can be seen in Fig. 7, the total delay time in-
creases linearly with sequential RPCs. This is to be ex-
pected. The total delay time of concurrent RPCs seems
to rise slightly, but the increase is much less than that of
sequential RPCs. These results provide evidence that
our three-layer approach is feasible.

5 Conclusions

In this paper, we have described the current state of
our research on the Globe location service. We have
developed an intermediate layer that allows us to make
use of concurrent, but serialized RPCs within a node.
The benefit of this approach is that our algorithms for
updating and looking up contact addresses can be ex-
pressed as high-level operations on a worldwide search
tree. The drawback is that we introduce additional
overhead. A simplified analysis, backed up by a first
batch of experiments, indicate that the extra overhead
is almost negligible in the face of wide-area communi-
cation.

Building the prototype has also revealed some im-
plementation problems. At present, the size of our
experiments is limited due to operating system con-
straints. In particular, the number of concurrent
threads that can be simultaneously scheduled within a
single process is limited. A redesign of our scheduling
layer is therefore necessary to conduct further experi-
ments.

References

[1] A.D. Birrell and B.J. Nelson. Implementing Re-
mote Procedure Calls. ACM Trans. Comp. Syst.,
2(1):39–59, Feb. 1984.

[2] F.J. Hauck, M. van Steen, and A.S. Tanenbaum.
Algorithmic Design of the Globe Location Ser-
vice. Technical report no. IR-413, Vrije Univer-
siteit, Amsterdam, Dec. 1996.

[3] P. Homburg, M. van Steen, and A.S. Tanenbaum.
An Architecture for a Wide Area Distributed Sys-
tem. In Proc. Seventh SIGOPS European Work-
shop, pp. 75-82, Connemara, Ireland, Sep. 1996.
ACM.

[4] M. van Steen, F.J. Hauck, and A.S. Tanenbaum.
A Model for Worldwide Tracking of Distributed
Objects. In Proc. TINA’96, pp. 203-212, Heidel-
berg, Germany, Sep. 1996. Eurescom.


