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1. INTRODUCTION

With the increasing mobility of objects in the Internet, such
as users, hardware and software resources, efficiently track-
ing those objects has become critical. Location services,
which have traditionally been part of phone systems, per-
form the task of tracking objects. Many ways exist to im-
plement location services [1], but matters become complex
when dealing with a large number of objects spread across
a wide-area network. As part of the Globe project we are
building a location service designed to handle a vast num-
ber of potentially mobile objects distributed worldwide. The
Globe location service is built as a distributed search tree,
representing a partitioning of the underlying network [2].

To designate objects, the Globe location service uses uni-
versally unique identifiers called object handles. An object
handle is a pure name: it contains no information or hints on
how and where to locate the designated object [3, 4]. An ob-
ject’s location, in turn, is described by means of a contact
address, which contains information on where and how to
contact an object. An object handle maps to possibly several
contact addresses, for example, if the object is replicated.
Each node in the tree of the Globe location service main-
tains information about objects. A node supports lookup op-
erations by which an object handle is mapped to a contact
address, and update operations by which a contact address is
added or removed.

To achieve scalability, exploiting locality is extremely im-
portant. A request to lookup or update an object handle
should therefore preferably visit nodes close to the client that

initiated the operation. Furthermore, the number of nodes
visited should be minimal, even in the presence of objects
with a high migration frequency. To improve scalability of
lookup operations, research suggests caching results [5, 6]
in addition to applying other techniques, such as distribution
and replication [7]. However, caching is effective only when
there is a stable name-to-address mapping, which is not the
case for highly mobile objects.

To overcome the limitations of result caching, we have
devised a location caching scheme in which we cache a
reference to a node holding an address of the object, rather
than caching the address of the object itself. With a location
cache, a lookup operation is done at best in two hops: one to
get the location of an address from the cache, the other one
to retrieve the current address from that location.

This paper presents the design of a location caching
scheme for the Globe location service along with a detailed
description on how to efficiently lookup a contact address for
an object. The paper supplements [8] and together they pro-
vide the algorithmic details of a worldwide scalable location
service. The paper is organized as follows. Section 2 gives
an overview of the Globe location service. Section 3 presents
the basic mechanisms for effective caching, followed by a
detailed description of the lookup operation in Section 4.
Section 5 describes a simple interface to the location ser-
vice for supporting mobile objects. Section 6 discusses our
work in relation to other research and Section 7 draws our
conclusions.
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FIGURE 1. The organization of the Globe location service into domains.

2. THE GLOBE LOCATION SERVICE

The Globe location service is built as a hierarchy of domains.
It supports basic operations to look up contact addresses, and
to insert and delete them. Insertion and deletion are jointly
referred to as update operations. This section outlines the
overall organization of the Globe location service as well as
the approach for looking up and updating contact addresses.

2.1. General organization

The location service is based on a hierarchical organization
of the network into domains, similar to the organization of
domains in the Domain Name System (DNS) [9]. Domains
divide the underlying network into geographical, adminis-
trative, or network-topological areas. For example, a lowest-
level domain (called a leaf domain) may represent the net-
work of a city, whereas the next higher-level domain repre-
sents the country or state in which this city is located. The
highest-level domain represents the entire network, such as
the Internet. This organization is shown in Figure 1. For
example, the domain Europe consists of three subdomains:
France, UK and The Netherlands. Domain France is subse-
quently divided into two subdomains: Rennes and Paris. A
further division into lower-level domains could represent a
neighborhood or a campuswide network of a university.

Within the Globe location service, a domain is represented
by a directory node. Each node is responsible for keeping
track of all objects located in its own domain. As a con-
sequence, the root node knows about all objects worldwide
and can locate any of them if need be. A directory node uses
a separate contact record for each object registered in its
domain. A contact record consists of a number of contact
fields, one for each subdomain (see Figure 2). A contact
field stores one or more addresses for its associated subdo-
main where the object can be contacted. Alternatively, it
stores a forwarding pointer which indicates that an address
is stored at a lower-level node in its subdomain. If a con-

tact field for a given subdomain is empty, the object has no
contact address in this subdomain.

Figure 2 shows an example of a tree in which a repli-
cated object is available at two locations: in Paris and in
London. For each contact address, there is a chain of for-
warding pointers starting from the root node (labeled World)
to the node where the address is actually stored. By default,
an address is stored in a leaf node. However, it is possible
to store an address at an intermediate node, such as in node
UK, which stores the London address.

To avoid having the root node and other high-level nodes
become a bottleneck, we partition a directory node into sev-
eral physical nodes (i.e., servers running on separate ma-
chines). Partitioning is transparent: the physical nodes form
together a logical directory node. Each physical node is re-
sponsible for a subset of objects residing in the domain asso-
ciated with the logical node. Partitioning is done by means
of a location-aware hashing technique of which the details
are described in [10].

2.2. Lookup operations

The basic approach to looking up an address in the Globe
location service is fairly simple. However, it may lead to a
waste of resources and exhibit unscalable behavior. In this
section, we first present the basic approach for looking up an
address and then show how to overcome its problems. We
discuss the role of caching and how to make it effective in
the case of mobile objects.

2.2.1. Basic approach
In Figure 2, consider a client residing in leaf domain Am-
sterdam wishing to look up a contact address for an object
replicated in Paris and London. This client sends a lookup
request to node Amsterdam, which checks whether the ob-
ject is located in its own domain. If the object is unknown to
node Amsterdam, it forwards the request to its parent node
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FIGURE 2. The organization of the Globe location service for a single replicated object.
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FIGURE 3. The principle of location caching.

The Netherlands. Forwarding continues until a node with a
contact record for the object is reached, which in the worst
case is the root. In our example in Figure 2, the lookup re-
quest is forwarded from node Amsterdam up to node Europe.
At this point, it is known that the object can be contacted
in subdomains UK and France. The lookup request is for-
warded to the directory node of either subdomain, in our ex-
ample node UK. Once an address has been found, the reply
follows the reverse path of the request, back to the request-
ing client.

A naive approach to selecting a subdomain for forwarding
the lookup request as in the case of Europe is to choose either
node France or node UK at random. Alternatively, the lookup
request can be forwarded to all subdomains in parallel. How-
ever, this would generally incur a waste of resources. A bet-
ter approach is to attach a timestamp to each contact field
and use it to take a decision. The timestamp records the
last time the contact field became nonempty. This time indi-
cates when an object moved into the subdomain. The lower
the timestamp, the longer the object has been continuously
residing in the subdomain. Following the least-recent for-
warding pointer leads to a subdomain where the object has
been available the longest. In our location service, we gener-

ally prefer to select the most stable address we can find. Fol-
lowing the least-recent forwarding pointer is based on the
expectation that the address that is found in the associated
subdomain will be more stable than an address found by fol-
lowing a more recent forwarding pointer.

Occasionally, a lookup operation may reach a node that
stores both an address and a forwarding pointer. If so, the
lookup operation is not forwarded but returns the address
found. We consider it better to return an address as soon as
possible than to continue searching. Such a strategy reduces
the length of the search path instead of the one that returns
an address from the most stable location.

2.2.2. Role of caching
In the basic approach to looking up an address we may have
to go all the way up to the root and then back down the tree
via a path of forwarding pointers. Having such a global tree
traversal is generally inefficient as is also demonstrated for
DNS [11]. We need to make sure that this rarely happens.
Efficiency is considerably improved by caching results from
previous lookup operations. Unfortunately, caching a con-
tact address of a mobile object is not effective as we can
expect such an address to rapidly become invalid. Caching
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is effective only when the original data do not change often.
Returning to Figure 2, consider a mobile object that mi-

grates within domain France. Regardless of the object’s cur-
rent address, node France always stores a forwarding pointer
to one of its child nodes. By caching a reference to node
France instead of the object’s current address, we quickly
locate the object, no matter how often it migrates within do-
main France.

To further improve performance, a contact address can
be stored at an intermediate node. The current address of
our mobile object would therefore be stored in node France.
This happend, for example, at node UK, which thus became
a stable address location, also called a stable location. A
stable location for an object is a directory node that always
stores a contact address for the object. A lookup operation
visiting such a node finds the address stored there. While
the response to the lookup request travels back to the node
that initiated the lookup, it triggers the caching of a reference
to the stable location. As illustrated in Figure 3 each node
on the return path (i.e., The Netherlands and Amsterdam, re-
spectively), stores a pointer to node UK. As an effect of us-
ing location caches, a subsequent lookup request from do-
main Amsterdam for the same object visits only two nodes:
Amsterdam where it finds a cached pointer to UK, and node
UK where it finds a contact address.

2.3. Update operations

Figure 4 shows the steps for inserting a contact address in the
location service from domain London. Each contact address
is associated with a specific leaf domain. This leaf node is
contacted when an insert request is issued and, in principle,
stores the address in the contact record associated with the
object. If the node does not yet have a contact record for
the object, it creates one and asks its parent node permis-
sion to store the address. If permission is granted, the parent
node installs a forwarding pointer. If necessary, it also cre-
ates a contact record for the object and contacts its own par-
ent node. The insert operation stops as soon as the request
reaches a node where the object is already known [which is
node Europe in Figure 4 (a)]. In the worst case, the request
is forwarded to the root node.

During the insertion process, a parent node has the right to
store the address itself instead of a forwarding pointer to the
requesting child node. This is the case for node UK in Fig-
ure 4 (b). The child node (London) is not granted permission
to store the address and no forwarding pointer is installed in
the parent node (UK). Instead, the parent stores the address.

Deleting an address is straightforward. A deletion request
is sent to the node of the address’s leaf domain. It is for-
warded upwards until the contact address is found where it
is deleted from the contact record. If the deletion leaves a
contact record empty, the record is deleted as well. The par-
ent node is then requested to remove its forwarding pointer,
which may, in turn, lead to the further deletion of forward-
ing pointers and contact records at higher-level nodes. If the
address is not found at all, the delete operation simply fails.

By deleting a contact record when it becomes empty, we

also delete its timing information. This may seem a rather
crude decision, but has the benefit of simplicity: a directory
node does not keep track of objects that are currently not in
its domain. An alternative is to keep the timing information
even when the contact record is deleted so that it can be used
when the object returns. However, this would require addi-
tional facilities, such as garbage collecting old information.
It is difficult to evaluate at this point whether the benefits of
keeping timing information warrant such extra data manage-
ment. For this reason, we have decided to leave it out of the
current design, and subject it to further research.

3. EFFECTIVE LOCATION CACHING

In the Globe location service, caching is based on the use of
stable address locations. In this section, we present how to
actually identify a stable location by using timing informa-
tion and how to maintain this information in contact records.
We also show how to adapt the stable location to the behav-
ior of an individual object and outline the management of
location caches.

3.1. Identifying a stable location

A stable location is identified by keeping track of when up-
dates to a contact record take place. Each field f of a contact
record has an attribute Tfilled � f � that records the last time an
empty contact field was filled with an address or forward-
ing pointer. In other words, it records the last time an ob-
ject migrated into a given subdomain. We use the notation
Tfilled � f ������ to indicate that Tfilled � f � is defined. Migrations
within the same subdomain are not significant for selecting a
stable location and are therefore not recorded. Whenever an
update operation adds an address or pointer to a previously
empty field, a history value H is computed for the contact
record CR as a whole using the following aging algorithm:

D : � Tnow � max � Tfilled � f �	��
��� f 
 CR �
H : � α � D � � 1 � α ��� Hold

where Hold denotes the previous history value and Tnow the
time at which the update is taking place. The variable D rep-
resents the elapsed time (i.e., duration) since the object last
moved into any subdomain it did not yet reside in. Comput-
ing the last time when such a move took place is done by
looking at the value Tfilled � f � for each contact field f where
the object resides, and taking the highest value. If D is low,
the object recently moved to a subdomain where it did not
yet offer a contact address. If D is always low, we are ap-
parently dealing with an object that is moving frequently be-
tween subdomains.

We are interested in whether the object frequently moves
between subdomains. In such cases, it may be sensible to
store the object’s current contact address at the node where
H is computed instead of at one of the child nodes. In order
not to rely on just the most recent value of D but also to
take preceeding values of D into account, we compute the
history value H from D and a weighted aggregated value
over previous durations. The initial value for H is set to a
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FIGURE 4. The principle of inserting an address. (a) The insert request travels upwards to the first node where the object is known. (b) A
path of forwarding pointers is established.

large, finite number; for each field f , Tfilled � f � is initially
undefined. Tfilled � f � also becomes undefined when the object
moves out of the associated subdomain.

To illustrate, consider a mobile object with only a single
address for which a given node calculates the history. If the
object is frequently migrating between subdomains, then the
history value is small. In addition, if the contact record is
relatively old, the node containing this record is a potential
stable location for the object. On the other hand, a large
history value shows that it is some time ago that the object
migrated into a subdomain where it did not have an address
before. From the node’s perspective, the object is hardly
migrating between its subdomains. This still makes the node
a stable location, but it is presumably not the best one.

3.2. Adapting the stable location

There are two cases to consider for changing a stable loca-
tion. First, a node may decide it is a better location to store
an object’s addresses than any of its child nodes. This cor-
responds to storing addresses higher in the tree, also called
upwards. Second, it may also occur that a child node is po-
tentially better as a stable location. In that case, addresses
need to be stored lower in the tree, that is, downwards.

3.2.1. Storing an address upwards

To move a stable location upwards, each node maintains a
mobility threshold. This threshold is used by a node to de-
cide if it should start storing the contact addresses of an ob-
ject instead of its children. To explain, consider a node N
and assume that the history value of an object drops below
N’s mobility threshold. Intuitively, this means that the object
is moving often between the subdomains of N. In that case,
it is more efficient to store the contact address of the object
at N instead of regularly switching the storage location be-
tween the children of N.

Letting N store the address is relatively simple. When-
ever the object migrates into a subdomain where it did not
yet have an address, the child node of N associated with this
subdomain eventually requests node N to install a forward-
ing pointer. Based on the history value, node N can then
refuse to grant the request and instead store the address it-
self in the contact field for that subdomain.

Objects that frequently migrate within a large area impose
a potential performance problem. Assume that the current
address of such an object is stored by a higher-level node.
As an update operation is always initiated at a leaf node, it
is necessarily forwarded along each node on the path to the
stable location. Nevertheless, such an update is cheaper than
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1. Take-over 3. Delete request 4. Reinsert request
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FIGURE 5. A possible race between moving an address downwards and deleting it.

keeping the current address at one of the lower-level nodes,
which requires constructing a path of forwarding pointers to
the new address, and removing the path to the old address.

3.2.2. Storing an address downwards
An object can settle down within a specific subdomain. This
means that the object migrates only within this subdomain
or does not migrate anymore. In such a case, it is better
to let the child node for that subdomain store the current
address. From a node’s perspective, settling down means
that Tfilled � f � for the field associated with that subdomain
no longer changes. This situation is detected by checking
whether the last time an object migrated into a subdomain
exceeds a maximum duration Dmax:

Tnow � Tfilled � f ��� Dmax

Tnow denotes the time at which this operation is performed.
Whenever this expression becomes true, the child node is
instructed to “take over” the address. Checking the dura-
tion time is done at the node where the address is stored
each time the contact record is accessed by a location ser-
vice operation. Additionally, checking is done by means of
a background process.

Downward storage of addresses requires an explicit action
to be taken at the node where the address is stored. Only this
node has a representative value of the history and is able to
decide when to store an address downwards. Storing down-
wards requires two suboperations: (1) storing the address at
the child node and (2) installing a forwarding pointer at the
current node in place of the address. These two subopera-
tions should be carried out as a single atomic operation.

To avoid the overhead of a full-blown transaction, we take
the following approach. Whenever a node N decides that its
child node CN should take over the storage of addresses for
its subdomain, it sends a take-over message to CN. This
message lists the addresses for which CN should request
storage. Node N does not maintain any state on whether
it requested one of its child nodes to take over the storage
of addresses. Consequently, it may decide at any point to
send out another request. Keeping nodes as ignorant as pos-
sible, in this case by forgetting that a take-over message has
been sent, keeps the overall management of a node simple.
In particular, each request from a child node can always be
considered afresh and independent of previous requests.

When a child node receives a take-over request from its
parent node, it treats it as an insert operation. Because the
child node has no contact record for the associated object, it
requests its parent node to install a forwarding pointer, just
as it would usually do. The parent node N will notice that it
already stores the addresses and can decide to replace those
addresses with a single forwarding pointer to the child node
CN.

This approach introduces a race condition between a dele-
tion and an insertion of the same address. Assume parent
node N stores address addr but wants child node CN to store
it. Node N sends a take-over message to CN, shown as mes-
sage 1 in Figure 5. Around the same time, the object asso-
ciated with addr decides to delete its contact address (shown
as message 2). If this deletion (message 3) takes place in N
before CN decides to insert addr (message 4), the insertion
by CN should fail.

This race condition can be circumvented by marking the
insert request CN sends to its parent node as being triggered
by one of the higher-level nodes. This makes the request
explicitly marked as a re-insert. This is the only adaptation
required for the insert operation. Following the normal insert
procedure, the request is passed to the parent. If the address
is no longer stored there, the parent can only conclude that it
has already deleted the address (and possibly even the entire
contact record for the object). Therefore, if no more infor-
mation is found about the object, the re-insertion fails.

3.3. Cache management

To store pointers to stable address locations, each node is as-
sumed to have a location cache. A cache entry represents a
single object by a record maintaining two sets of locations,
local and remote, as shown in Figure 6 (we use an Ada-like
notation as in [8]). Each node has an associated unique node
identifier of type NodeID. For a node N, the field localPtrs
stores pointers to directory nodes in the same domain as N.
This includes all nodes from the subtree rooted at N. In con-
trast, remotePtrs stores pointers to nodes outside the cur-
rent domain. For example, in Figure 3, the cache for node
The Netherlands would contain only a reference to node UK
stored in remotePtrs, whereas the field localPtrs would be
empty.

A location stored in the cache is associated with an expi-
ration time. This time is computed by means of a function
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type CacheEntry is
record

localPtrs : set of NodeID : � �� ; ��� Pointers to locations in current subdomain

remotePtrs : set of NodeID : � �� ; ��� Pointers to locations outside current subdomain

expirationTimes : set � NodeID � of Date; ��� Indexed set of time when a cached reference expires

end record;

type Cache is set � ObjectHandle � of CacheEntry; ��� Indexed set of cache entries

type StoredAddress is
record

addr : Address : � NIL; ��� The contact address found during a lookup

age : Date : � 0; ��� Elapsed time since the address was stored in the location service

node : NodeID : � NIL; ��� The node where the address was stored

end record;

FIGURE 6. The data structures for caching.

(1) procedure cache insert � object : ObjectHandle � storedAddr : StoredAddress � is
(2) if storedAddr � node 	 domain � thisNode �
(3) then cache � object �
� localPtrs : � cache � object �
� localPtrs �
� storedAddr � node �
(4) else cache � object ��� remotePtrs : � cache � object ��� remotePtrs �
� storedAddr � node �
(5) end if
(6) cache � object ��� expirationTimes � storedAddr � node � : � expire � storedAddr � age � ;
(7) end cache insert

FIGURE 7. Inserting a cache entry.

expire which is presently left unspecified. A simple strategy
is to have the expiration time depend on the time the address
was inserted at the node where it was found. The more re-
cent its insertion time, the sooner the reference to its current
location expires. This approach resembles the Alex cache re-
placement policy applied to Web caches [12]. This strategy
can be tuned by using the history value as a way to predict
changes more accurately.

A cache itself is represented as an indexed set of cache
entries, in which we use an object handle as an index. This
representation also requires that we parameterize operations
with an object handle in order to perform cache operations.

Figure 6 also shows the data type StoredAddress, which
is a convenient representation of a contact address returned
as the result of a lookup request. It consists of a record with
three fields: the address, the time since it was stored in the
location service and the reference to the address location in
the form of a node identifier. A contact address is repre-
sented by the opaque data type Address, while Date is used
to represent time.

Inserting an entry into a cache is straightforward and is
shown in Figure 7. Due to the idempotent nature of set
operations, we need not check whether a node was already
cached. We only need to check whether the node where the
address was found is local, that is, whether it lies in the same
domain as the current node (line 2). The identifier of the
current node is available through the variable thisNode. The
function call domain(thisNode) returns the node identifiers of
the nodes in the subtree rooted at node thisNode. Depending
on the result, the node reference is stored in the local (line 3)
or in the remote (line 4) set. Finally, the expiration time for

the entry is updated.
To look up a cache entry, we distinguish whether the

lookup should return a local reference or a remote one,
which is expressed by the strategy parameter shown in line 1
in Figure 8. A cache lookup always returns the “nearest” ref-
erence, expressed by means of a function nearest. The actual
metric for nearest may vary but is by default the number of
links in the tree that need to be traversed from the current
node to the referenced node. As an alternative to selecting
either a local or remote reference, the best reference can also
be looked up. In that case, the nearest reference in the set of
local and remote references is returned (line 4).

Cache entries are deleted when they prove to be invalid
during a lookup operation. Offline purging of cache entries
is also triggered regularly, resulting in removing each entry
that has reached its expiration time.

4. LOOKUP OPERATIONS

To make use of the location caches, the basic lookup op-
eration has to be extended. The lookup has to ensure that
references to stable locations are cached, but also be able
to get locations from the cache and retrieve addresses from
them. This section first presents the data structures for con-
tact records and then the algorithm for looking up a single
contact address. Initially we make no distinction between
different contact addresses. Later, we discuss a mechanism
to select specific kinds of contact addresses while main-
taining the principle of locality. Strategies for distinguish-
ing replicas are independent of the caching mechanisms de-
scribed earlier.
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(1) procedure cache lookup � object : ObjectHandle � strategy : � local � remote � best ��� return NodeID is
(2) if strategy � local then return any in nearest � cache � object ��� localPtrs � thisNode � end if
(3) if strategy � remote then return any in nearest � cache � object ��� remotePtrs � thisNode � end if
(4) return any in nearest � cache � object ��� localPtrs � cache � object ��� remotePtrs � thisNode �
(5) end cache lookup

FIGURE 8. Looking up a cache entry.

type ContactField is
record

addrSet : set of Address : � �� ; ��� Set of contact addresses for subdomain

isPtr : Boolean : � false; ��� True iff contact field is forwarding pointer to child

empty : automatic Boolean � � addrSet � �� and not isPtr � ; ��� True iff contact field has no data

end record;

type ContactRecord is set � NodeID � of ContactField; ��� Indexed set of contact fields

type ContactRecordDB is set � ObjectHandle � of ContactRecord; ��� Indexed set of contact records

type History is set � ObjectHandle � of float; ��� Stores the current history for each contact record

FIGURE 9. The data structures for a contact record, and the definition of a database of contact records.

4.1. Data structures

The definition of a contact record is shown in Figure 9. A
contact field consists of a set of contact addresses addrSet.
The boolean isPtr is set to true if and only if the field plays
the role of a forwarding pointer to the associated subdomain.
Finally, empty indicates whether or not any data is stored in
the contact field. We assume that empty is set automatically
to true whenever addrSet becomes empty and isPtr is false.
Otherwise, it is automatically set to false. A contact record
is represented as an indexed set of contact fields. Further-
more, we represent the database of contact records as stored
at a particular node as a set indexed by object handles. In
addition, we use a separate data type for history values, also
represented as a set indexed by object handles.

Figure 9 shows no explicit timing information associated
to contact records or contact fields. Instead, we assume that
all containers (i.e., sets or records) keep an account of when
elements are added or modified. For any element a in a con-
tainer A,

date of a

returns the time when a was added to A or when it was last
modified. For example, if for a given contact field f empty
is false, date of empty returns the value Tfilled � f � described
in Section 3, that is, it returns the last time the object moved
into the subdomain associated with f .

Using this timing information, it is possible to select the
oldest element in a container. For example, if cr is a contact
record stored in node UK from Figure 2 then

addr : � oldest in cr � London ��� addrSet

returns the least recently inserted address in the set of ad-
dress for the London domain. In the case of an indexed set,
the index of the least recently modified element is returned.
In our example

child : � oldest in cr

returns the node identifier of the child node whose contact
field in cr has least recently been modified.

4.2. The lookup algorithm

Looking up an address in the location service without com-
promising scalability requires that we exploit locality as
much as possible. A lookup operation is always initiated
at a leaf node and gradually propagates upwards if need be.

When combining lookups with location caches, we take
the following approach. Looking up an object, we first look
for any contact address for the object in the current node. If
no address is found, the lookup checks whether an address is
available anywhere in the current domain, that is, the subtree
rooted at the current node. If this also fails, a remote domain
is inspected if a reference is found in the location cache. If
all possibilities have been unsuccessful, the lookup request
is passed to the parent node (unless the parent was actually
the requesting node).

This strategy leads to the lookup algorithm as shown in
Figure 10. The operation takes three parameters: caller iden-
tifies the node from which the operation has been received,
object identifies the object for which an address is being
looked up, and subDomOnly indicates whether it is permit-
ted to continue searching only in subdomains.

We assume that each node has an associated contact
record database, represented by a variable CRDatabase. The
lookup operation starts by looking up the contact record for
the given object, represented by the variable currentCR in
line 3. The value of currentCR will be set to NIL if the ob-
ject is not known at the current node. The pseudo code in
lines 6–27 shows the case where the lookup operation has
reached a node where the object is known, that is, it has
found a contact record currentCR for the object.

The lookup operation then checks whether the contact
record stores addresses. If so, it chooses the oldest con-
tact field storing an address (line 8), where oldest is deter-
mined by the least recent update to that contact field’s set of
addresses. Then it selects the oldest address from this set
(line 10) and returns it as the result of the lookup (line 11).

If no address is found in the object’s contact record,
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(1) procedure lookup � caller : NodeID � object : ObjectHandle � subDomOnly : Boolean � return StoredAddress is
(2) storedAddr : StoredAddress : � NIL;

(3) currentCR : ContactRecord : � CRDatabase � object � ;
(4) ��� ———————————————————- LOCAL SEARCH ———————————————————-

(5) if currentCR
�� NIL then

(6) ��� We should be able to find something at this node. Check if there is a contact field containing an

(7) ��� address and pick the oldest address that can be found. This address is probably the most stable one.

(8) child : NodeID : � oldest in currentCR with currentCR � child ��� addrSet
�� �� ;

(9) if child
�� NIL then

(10) addr : Address : � oldest in currentCR � child �
� addrSet;
(11) return � addr � date of addr � thisNode � ;
(12) end if
(13) ��� No address is stored in this contact record. Continue the lookup by checking the location cache.

(14) storedAddr : � check cache � object � local � ;
(15) if storedAddr

�� NIL then return storedAddr end if
(16) ��� Cache lookup also failed. Continue inspecting each subdomain until an address is found.

(17) children : set of NodeID : � � child 	 index of currentCR with currentCR � child ��� isPtr � ;
(18) while children

�� �� loop
(19) ��� Choose the child for which a forwarding pointer has been stored the longest time.

(20) child : � oldest in currentCR with child 	 children;

(21) children : � children � � child � ;
(22) storedAddr : � child � lookup � thisNode � object � subDomOnly � ;
(23) if storedAddr

�� NIL then
(24) cache insert � object � storedAddr � ;
(25) return storedAddr;
(26) end if
(27) end loop
(28) end if
(29) ��� ———————————————————- REMOTE SEARCH ———————————————————

(30) ��� No address has yet been found. If this lookup was initiated from inspecting a location cache first, then stop

(31) ��� searching and give up. Otherwise, proceed with the lookup by checking the cache for a remote domain. If an address

(32) ��� is found, return it, otherwise, continue with the parent node to broaden the search region. If that

(33) ��� fails as well, give up.

(34) if not subDomOnly then
(35) storedAddr : � check cache � object � remote � ;
(36) if storedAddr

�� NIL then return storedAddr end if
(37) ��� So far nothing has been found. Forward the request to the parent thus broadening the search region.

(38) if caller
�� parent then

(39) storedAddr : � parent � lookup � thisNode � object � false � ;
(40) if storedAddr

�� NIL then
(41) cache insert � object � storedAddr � ;
(42) return storedAddr;
(43) end if
(44) end if
(45) end if
(46) return NIL;

(47) end lookup;

FIGURE 10. The lookup operation.
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(1) procedure check cache � object : ObjectHandle � strategy : � local � remote � best ��� return StoredAddress is
(2) storedAddr : StoredAddress : � NIL;

(3) cachedNode : NodeID : � cache lookup � object � strategy � ;
(4) if cachedNode

�� NIL then
(5) storedAddr : � cachedNode � lookup � thisNode � object � true � ;
(6) if storedAddr

�� NIL then cache insert � object � storedAddr � end if
(7) if storedAddr � NIL or else storedAddr � node

�� cachedNode then
(8) cache delete � object � cachedNode �
(9) end if

(10) end if
(11) return storedAddr;
(12) end check cache;

FIGURE 11. Operation for checking the cache.

the location cache is inspected by calling the procedure
check cache (Figure 11), which is discussed below. Check-
ing the cache may imply doing a lookup in one of the subdo-
mains. If an address is found at this point, it always resides
in the current domain, which is specified by the strategy local
in line 14. Any address found is returned, successfully com-
pleting the lookup operation (line 15).

If the cache lookup fails, the lookup continues by inspect-
ing each subdomain for which the current contact record
stores a forwarding pointer. For this purpose, we construct
the set children in line 17 from the index set of currentCR.
Note that the caller is never in this set. If this were the case,
then the node where the lookup operation is currently being
executed would have a pointer to the caller, meaning that an
address is stored in the caller’s domain. Consequently, an
address would have already been found locally to the caller.

The subtree with the least recently added forwarding
pointer is inspected first. The associated child node is se-
lected and removed from the set (line 20) and its subtree is
explored. Normally, this operation should succeed and re-
turn an address. If so, the address location is stored in the
cache (line 24). However, in the face of a concurrent delete
operation, it may be necessary to continue the search in an-
other subtree (lines 18–27).

This process carries on until all subtrees have been in-
spected. At this point, there are two alternatives (line 34).
First, this lookup has been invoked by a node outside the cur-
rent subtree. This happens when the lookup request comes
from the parent or when it has been forwarded through a
node reference cached at the calling node. In the latter case,
the lookup should stop and return control to the invoking
node (line 46). Returning control guarantees the termination
of the lookup operation but also respects the locality prin-
ciple. By this principle, following a node reference implies
that an address should be found either from the referenced
node or from one of its subdomains. The referenced node is
not allowed to contact its parent node and have the lookup
request travel upwards in the tree.

The lookup request can come from the parent only if the
parent had a forwarding pointer to the current node. If execu-
tion comes to line 34, this means that the address associated
with that pointer has been deleted during the lookup. In this
case, we allow the lookup procedure to continue searching

for remote references as we explain for the second alterna-
tive.

The second alternative is that the lookup has been invoked
from a leaf node in the current domain. In that case, the
lookup continues by checking for a remote reference in the
cache. This is expressed in line 35 by passing the param-
eter value remote to check cache. If a reference is found
in the cache as well as a valid address in the remote sub-
tree, we return this address. If no address was found, the
only alternative left is to forward the operation to the parent
node provided it did not originally invoke the current lookup
(line 39).

To complete our description of the lookup algorithm, the
procedure check cache is shown in Figure 11. It starts
with looking for a cache entry (line 3), taking into account
whether only local references can be returned or not. If a
node is found, check cache invokes the lookup operation at
this node setting sudDomOnly to true (line 5), and inserts the
result in the cache if the lookup was successful (line 7). If an
address was found, it should normally still be stored at the
same node that was referenced in the cache. If this is not the
case, the cached reference is no longer valid. Apparently, an
address has been stored at a lower-level node in the subtree
rooted at the node for which a reference was cached. Con-
sequently, the cached reference is removed from the cache
(line 7). Note that this unconditional removal may actually
be part of a replacement by means of the insertion of an up-
to-date reference in line 6. In other words, if we found an
address at node N, we first cache a reference to N in line 6.
However, N may be the new location of that address, for
which reason we remove the cached reference to its former
location in line 8.

4.3. Distinguishing replicas

The lookup procedure supports replicated objects. In some
cases a client does not want just any address of a repli-
cated object, but requires one that meets its specific require-
ments. For example, when dealing a primary/backup repli-
cation scheme, a client may want to connect only to the pri-
mary to possibly install another backup. If such an address
is available, it should be advertised and it should be possible
to explicitly look it up.

One solution is that the object makes itself known under
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FIGURE 12. A lookup request excluding certain contact addresses using a property map.

different object handles, each one being related to a class of
contact addresses. However, having objects with multiple
identifiers is an undesirable feature. A client that can sup-
port multiple protocols would be forced to initiate several
lookups for the same object, each lookup using a different
identifier to find the nearest address. We find that having to
initiate multiple lookups is an unacceptable solution.

Another solution is to extend the location service to sup-
port (attribute, value)–pairs and associate them with each
contact address. Instead of providing only an object identi-
fier, a client would also provide a predicate, in terms of at-
tribute values, to be matched against the information stored
along with a contact address. This approach has a seri-
ous drawback in that it violates the locality principle. At
present, the location service searches for an address using
only the associated object identifier. If we were to store at-
tributes along with contact addresses, we would be forced to
inspect each address and match its attribute values against
the client’s predicate. A lookup request would then always
have to travel to the node where an address is stored and
possibly return empty-handed if that address did not meet
the client’s requirements.

Locality requires an efficient solution by which the loca-
tion service can discard a branch in the tree even if it knows
that it can find an address in that branch. It should discard a
branch whenever it knows the address is not what the client
is looking for. In theory, arbitrary (attribute, value)–pairs
can be stored along with forwarding pointers instead of con-
tact addresses. However, this would introduce additional
complexity and require a costly attribute-comparison oper-
ation when doing a lookup at a particular node.

Our solution is to use property maps. In our current imple-
mentation, a property map is a bit string that is associated
with a contact address for a given object. Each bit represents
an object-specific property. When set to 1, the address has
that property; when set to 0, it does not. When an address
is stored in the location service, its property map is stored as
well. For any node N, if an address in a child node’s domain
has property map m, a copy of m is stored at N along with

the forwarding pointer. Only if another address in the child
node’s domain has a different property map m � , then node N
will store m � as well.

When a client issues a lookup request, it provides a map
mreq of required properties along with a mask mask. The
client sets a bit in mreq if it wants the address to have the
associated property and 0 if not. The client sets a bit in mask
if it finds the property relevant (whether it actually wants it
or not), and 0 if it has no interest in this property. A contact
field is eligible for selection during a lookup operation only
if it has a property map m stored, such that:

� mask AND m � � � mask AND mreq �
Consider the example in Figure 12 using 4-bit property
maps. A client in domain Amsterdam is looking for an ad-
dress having property 2 but not property 3. It is not in-
terested in properties 1 and 4. Therefore, it sends a mask
mask � 0110 along with a map mreq � 0100. The lookup re-
quest is forwarded upwards until a node is reached that con-
tains information on an address matching ?10?, where “?”
indicates a don’t care value for that property. As it turns out,
only the address stored in the Rennes domain matches these
requirements, for which reason the lookup is forwarded only
to this domain.

The operations for updating and looking up addresses re-
quire minor modifications to support property maps. When
caching a reference to a node for a given object, we not only
store the property map of the address found but the property
maps of all the addresses of the associated object available
at this node. A property map is deleted from a cache entry
when the referred contact record does not contain a matching
address anymore.

5. OPERATIONS FOR MIGRATING AN OBJECT

Besides the basic operation for looking up an address, the
location service offers a convenient interface to track mo-
bile objects. We distinguish two types of mobile objects.
The first type consists of objects that disconnect while mi-
grating from one place to another, such as a notebook. The

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001



EFFICIENT TRACKING OF MOBILE OBJECTS IN GLOBE 351

Front
end

Front
end

Front
end

Front
end

Front
end

Front
end

Location
service

Mobility
service

3. move_completed

5. delete 4. insert

1. will_move

2. disable
address

FIGURE 13. The organization of a separate layer to support mobility operations.

other type are mobile objects that can still be contacted even
while they are migrating to another location. Many wire-
less devices but also software agents fall into this category.
Replicated mobile objects are supported as well. In this case,
mobility means that a specific replica migrates from one lo-
cation to another, such as a local copy of a replicated file on
a person’s laptop.

Dealing efficiently and effectively with mobility in the lo-
cation service requires that the insertion of a new contact
address for a given object precedes the deletion of the old ad-
dress. This ordering is necessary to allow the directory node
of the domain in which the migration takes place to main-
tain a contact record on the object. As an example, consider
a mobile object in Figure 4 with only a single address within
the UK domain that migrates from London to Glasgow. If
the object would first delete its current address, the contact
record in node UK would become empty and be deleted. All
information gathered on the object in domain UK would be
lost. This loss is avoided if the new address in the Glas-
gow domain is inserted first. The contact record in node UK
is preserved and still contains data when the removal of the
London address take place.

We hide such matters behind an interface implemented as
a front end to the location service as shown in Figure 13.
This interface supports both the mobility of objects operat-
ing in connected mode as well as those operating in discon-
nected mode, while taking care that information on object
migration is preserved.

The interface consists of two operations, will move and
move completed. The operation will move is called by an
object prior to operating in disconnected mode at its current
location. It disables the object’s address, thus preventing
clients to use the address. Disabling an address does not re-
move the address but records it as being invalid. A lookup
operation never returns a disabled address.

When the object reconnects, it invokes the operation
move completed which takes the old and new address as in-
put. The new address is inserted into the location service.
Upon completion, the front end at the destination sends a re-
quest for deletion of the old address. If the insertion takes

too long, for example because of a link failure, the deletion
of the old address is sent without waiting for the insertion to
complete.

For an object operating in connected mode, only the oper-
ation move completed is called when the object arrives at its
destination.

As an example, when an object moves in disconnected
mode, it first calls will move, as shown as step 1 in Figure 13.
The front end will then request the location service to disable
the object’s address (step 2). When the object reconnects, it
calls move completed (step 3), resulting in the front end at
the new location to first insert the new address (step 4), and
delete the old address (step 5).

6. DISCUSSION AND RELATED WORK

Many experiments have shown that location-based names
are not sufficient for locating mobile hosts or objects [13,
14, 15, 16, 17, 18, 19], even if their mobility rate is quite
low. There are three common architectures of distributed lo-
cation services.

First, a two-tier scheme approach uses home databases lo-
cated in a predefined network zone. Each mobile entity is
assigned both a network zone and a home which becomes
permanently responsible for the mobile entity. This home
database is in charge of keeping the current location of the
mobile entity up-to-date and handles location requests. This
approach has been used for example with GSM [20] and Mo-
bile IP [16].

The second approach is the tree-structured hierarchical
scheme. In this scheme, the network is subdivided into do-
mains that are aggregated into larger, nonoverlapping do-
mains. Each domain is represented by a node in the tree.
The root node represents the entire network. This approach
has been long used in traditional (wireline) telephony. A
disadvantage of this approach compared to nonhierarchical
solutions is that lookup requests may need to travel across
several nodes.

A somewhat analogous approach that is used in metropoli-
tan ad-hoc networks is the Grid location service [21]. In
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Grid, the network is hierarchically organized on a per-object
basis. Each host can act as a location server for an object.
The goal is to find location servers that have information
about the current address of an object. Servers are found
using geographic routing based on the object’s identifier.

The third alternative is formed by nontree hierarchies.
Such an hierarchy is based on a graph-theoretical approach,
as proposed in [13]. It uses regional databases to favor lo-
cal operations (locate nearby entities, move to nearby loca-
tions). The hierarchy is constructed such that the maximal
network distance between two sites, called diameter, is be-
low a given upper bound. It guarantees that communication
overhead for locating or moving entities are polylogarithmic
in the size (number of sites) and diameter of the network.

Supplementary to these solutions is to use location caches.
The solution proposed in [22] aims at reducing network traf-
fic when locating mobile entities by using shortcut links in
the form of bypass pointers. A bypass pointer is a direct
link between two nodes in different subtrees of a search
tree. Whenever such a link is found for a specific object,
the lookup operation is forwarded along that link, thereby
avoiding the traversal of the least common ancestor of the
two nodes. Caching is therefore used to reduce the length
of the path of forwarding pointers to be followed by a search
request. In the Globe location service, caching is made more
accurate by storing a reference to the node where the address
is actually kept, reducing the length of the path to, at best,
two hops.

In most other location services, the result of a lookup op-
eration is cached, namely the address of the object that was
searched for. Data caches are used only when the lookup-
to-mobility ratio for a specific client is high enough [1].
In the Globe location service, data caches are currently not
supported. Addresses of mobile objects are expected to be
highly unstable and thus not worth caching. Moreover, stale
cache entries would imply extra load on both the client and
the location service. For example, the only way the location
service can check the validity of a cached contact address, is
to initiate a lookup to see if the address is actually stored in
one of its nodes (and not only in caches). Therefore, it seems
better to let a client check whether an address is still valid by
contacting the object. If that fails, the client should do an-
other lookup, indicating that the previously returned address
is (apparently) not valid. Clearly, these are not viable solu-
tions.

A useful data caching strategy would be to cache rela-
tively stable addresses. The stability can be derived from
the time the address was inserted into the location service.
This ensures that the object handle-to-address mapping is
stable enough to be cached. To give full control to the lo-
cation service, objects must give guarantees on how long
they can be contacted at that address. With a lease-based
invalidation policy, the location service will be able to purge
expired data from a cache without relying on clients (see
also [23, 24, 25]).

7. CONCLUSION

The purpose of this study is to provide an efficient location
service for both mobile and nonmobile objects. We consider
a distributed search tree, whose nodes store addresses. Op-
timizing such a location service requires that we reduce the
path for looking up addresses. Making use of what we call
stable locations helps to achieve this goal.

In the Globe location service, it is relatively simple to
identify stable locations. The location service collects in-
formation about object migrations. Whenever required, it
ensures that the object’s address is stored at the appropri-
ate location. A stable address location strongly depends on
the object’s migration pattern. Each time the migration pat-
tern changes, the location service re-evaluates the stable lo-
cation. If necessary, a new one is found and the address is
transferred to this node.

This paper shows how locating objects and caching re-
sults in location services can take place in an effective and
efficient manner despite that objects may be highly mobile.
The result of our caching policy, in combination with ex-
ploiting locality during lookup and update operations, is that
searching for the current location of a mobile object is done
in a scalable manner. To substantiate our claims, we are cur-
rently setting up a large-scale experiment in which the ser-
vice will be used for a worldwide system for distributing
software [26]. As for further research, we intend to investi-
gate the usefulness of combining location and data caches.
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