
A Case Study of the Release Management of a
Health-care Information System

Gerco Ballintijn
Centrum voor Wiskunde en Informatica (CWI)

Amsterdam, The Netherlands
g.ballintijn@cwi.nl

Abstract

This paper describes a case study of the release management
of CS-ECIS, a health-care information system developed by
the Dutch software vendor ChipSoft. We performed this case
study to gain insight into the release management activities
of a real-life company. This insight would enable us to pro-
pose new ways to ease the effort and reduce the risks asso-
ciated with release management. The case study consisted
of recording both the release management activities for CS-
ECIS and its related development and deployment activities,
and subsequently comparing these activities with our initial
release management model. The description and comparison
enabled us to both evaluate and improve this initial model.

1. Introduction

Release management of enterprise application software is
a complex task for a software vendor. This complexity is
caused by the enormous scale of the undertaking. There are
many customers to serve, which all might require their own
version of the application. Furthermore, these applications
frequently consist of many components that depend on each
other. On top of that, the components evolve over time to
answer the changing needs of customers. Consequently, re-
leasing these applications takes a significant amount of effort
and is frequently error-prone.

The goal of our research project, called Deliver, is to ease
the software release management effort and reduce its risks
by managing explicitly all knowledge about the software.
For instance, by managing the software knowledge explic-
itly, a vendor can improve its software update process by en-
forcing consistency requirements. Furthermore, the explicit
management of software knowledge enables the evaluation
of “what if” scenarios, such as what will happen to the soft-
ware configuration of a customer, when she updates a certain
component?

To ease the effort and reduce the overhead of software de-
livery, we also desire support for software delivery via the In-

ternet, both as full packages and as incremental updates [14].
Fortunately, the explicitly managed software knowledge can
also be used to enhance the delivery of software. Specifi-
cally, it can be used to automatically create incremental up-
dates by computing the difference between an existing soft-
ware configuration and a desired configuration.

Central to the release management activities in our model
is the Intelligent Software Knowledge Base (ISKB). This
knowledge base can be seen as a type of software product
data management system (PDM), in that it stores informa-
tion about all the artifacts that are part of an application’s
life cycle. To design this knowledge base, we need insight
into the real-life issues of releasing large scale enterprise ap-
plications and about the context in which these issues occur,
such as development and deployment activities.

After having performed case studies at the Dutch software
vendors Exact Software [12] and Planon [13], we decided
to examine release management at the Dutch software ven-
dor ChipSoft. ChipSoft is a successful medium-size com-
pany that develops health-care information systems. The
case study had two goals. The first goal was to describe the
development, release, and deployment activities of ChipSoft,
including the tools and techniques used to support them. The
second goal was to compare these activities to the initial
model we developed in the Deliver project. The main contri-
bution of this paper is the resulting description and compari-
son. A technical report [2] describes the case study in more
detail.

The rest of this paper is structured as follows. Section 2
provides an overview of the Deliver model. Section 3 de-
scribes the design of our case study and Section 4 gives the
result of the case study: a description of ChipSoft, the prod-
ucts it sells, and its development, release, and deployment
processes. In Section 5, we evaluate our findings with re-
spect to the Deliver model. Section 6 discusses related work,
and in Section 7 we draw our conclusions.

1



2. The Deliver Model

According to SWEBOK [20]1 software release management
“. . . encompasses the identification, packaging, and delivery
of the elements of a product, for example, executable pro-
gram, documentation, release notes, and configuration data.”
In this paper, we use a slight variation on this definition,
where we put the “making available” activities in the release
management phase and the delivery activities in the software
deployment phase. Furthermore, we consider software devel-
opment to be all activities before release management, such
as design and implementation, and we consider software de-
ployment to be all activities after release management, such
as distribution and configuration.

The release management of a software application is com-
plicated by several factors. The first factor is the number
of components the application consists of. The second fac-
tor is the number of supported versions (i.e., revisions and
variants) of the components. The third factor is the number
of other applications the components are shared with. Con-
sequently, release management is particularly difficult when
applying structured reuse approaches, such as software prod-
uct families, product lines, or product populations [23].

In the management model proposed by the Deliver
project, the Intelligent Software Knowledge Base (ISKB)
plays a central role throughout the software life cycle. It can
be used to support development, release, and deployment ac-
tivities. Furthermore, the ISKB can be used both to drive
development, release, and deployment process and to ver-
ify product quality and progress. The ISKB also simplifies
the management of these processes by gathering and com-
bining all relevant information. In earlier work [17], Meyer
also describes an ISKB, but this one is focused primarily on
software development.

Conceptually, the ISKB can be considered a type of soft-
ware product data management (PDM) system [8], in that
it stores exhaustive information on potentially all software
artifacts. These artifacts can be both original and derived,
and both available at the vendor and installed at its cus-
tomers. The information has to be exhaustive since the re-
lease management activities tightly integrate with both de-
velopment and deployment activities, and all three require
different kinds of information. Apart from information usu-
ally stored in a PDM, we expect the ISKB to also store in-
formation that can be found in version management systems
and customer relationship management (CRM) systems.

The ISKB consists of two parts. The first part is the Cen-
tral Software Knowledge Base (CSKB), which is stored at
the vendor site. This knowledge base stores information
about all the artifacts needed for all available releases of all
available products. The second part is the Local Software
Knowledge Base (LSKB), which is stored at the customer

1SWEBOK: The Software Engineering Body of Knowledge

���
� ������������

���
�

���
�

	�	�	�	�	
	�	�	�	�	

�
�


�
�


�����
�����

�


�
 ����������
���������������
����������
������
���

�����
�����
���
���
��������������������

Local Software
(Knowledge) Base

Software Delivery
Internet-based

Central Software
(Knowledge) Base

Customer NCustomer 1

Software Development
Process

Vendor

Figure 1: Software (knowledge) delivery model proposed
by the Deliver project.

site. This knowledge base stores information about the prod-
ucts that are actually installed at the customer site (see Fig-
ure 1 and the description below). The LSKB is similar in
functionality to the local RPM database of the RPM pack-
age manager [1] and the on-line dependency analyzer (OA)
developed by Microsoft Research [7].

An important aspect of the Deliver model is the network-
based delivery of both software and knowledge about the
software. Network-based software (knowledge) delivery
refers to use of computer networks, such as the Internet, to
deliver software, as either full packages or incremental up-
dates, and knowledge about the software, such as versioning
and dependency information to customers. Network-based
software (knowledge) delivery lowers the overhead of pro-
viding new releases, shortens the release phase of a product,
and provides customers and vendors with insight in the de-
livery process.

Figure 1 shows our network-based software delivery
model with the ISKB. In this model, a software vendor de-
velops software, according to its own software development
process, resulting in artifacts and their metadata, which are
subsequently stored in the CSKB. The figure shows a CSKB
with five deliverable artifacts that can be downloaded by cus-
tomers. The figure also shows N customers that have down-
loaded these deliverables into their LSKBs, including their
metadata. Customer 1 has a configuration with two arti-
facts and Customer N has a configuration with three.

To build the ISKB, we face challenges in four areas. The
first area is the extraction of information. The question here
is what basic facts to gather about the software and its pro-
cesses and how to gather these facts. The second area deals
with the inference of knowledge. The question here is how

2



to extract useful “higher-level” information from the basic
facts. The third area deals with the representation of the ba-
sic facts and higher-level information. The question here is
how to store both the basic facts and higher-level information
in an efficient and effective way. The fourth area revolves
around the application of the higher-level information. The
question here is how to apply this information to solve real-
life business needs. In our view software knowledge com-
prises both the basic facts and higher-level information.

3. Case Study Design

The overall goal of the case study of ChipSoft was to provide
insight and help us deal with the four problem areas of our
ISKB. To structure the case study, we formulated the follow-
ing more-specific research goals.

G1 To describe the current development, release, and de-
ployment activities of ChipSoft.

G2 To relate these activities to the initial Deliver model.

The description would cover the procedures, techniques,
and tools used by ChipSoft and its customers and the con-
text in which they were used. This description would include
the problems and limitations of these procedures, techniques,
and tools. The analysis would answer the question what im-
provements and extensions would be needed in the Deliver
model. Of particular interest to both the Deliver project and
ChipSoft was determining to what extent the model could
help ChipSoft solve existing release management problems
or open up new business opportunities.

ChipSoft is relevant to our research project since its prod-
uct CS-ECIS, a health-care information system, deals with
an application domain with specific characteristics. Exam-
ining ChipSoft therefore allows us to see the release man-
agement activities of a company that is significantly dif-
ferent from previous case studies in other application do-
mains [12, 13]. For instance, since the majority of customers
of ChipSoft are hospitals, ChipSoft has relatively few cus-
tomers but many workspaces per customer. This is a differ-
ent kind of customer base than the customer base of Exact
Software [12] and Planon [13].

From the two research goals, we derived the following
four more specific research questions:

Q1 What are the development, release, and deployment ac-
tivities for CS-ECIS?

Q2 What tools and techniques are used by ChipSoft to sup-
port these activities?

Q3 How do these activities, tools, and techniques relate to
the Deliver model?

Q4 What aspects of the Deliver model should be improved
or extended?

To answer the research questions as precise and complete
as possible, we created a case study protocol to guide our
examinations and a case study database to store intermedi-
ate results. Furthermore, to achieve correctness of the end-
result, we cross-checked our findings where possible. As a
final check the work was critically reviewed by ChipSoft.

During the case study, we collected information to an-
swer the four research questions and achieve the two research
goals. Since the case study was mostly descriptive and ex-
ploratory [24], this information was largely of a qualitative
nature. This information was gathered from the following
sources:

• Interviews
• Software examination
• Document study
• Direct observations

During the case study, we spoke to the following types of
personnel at ChipSoft.

• Development personnel
• Release personnel
• In-house consultants
• Management

Even though the system administrators and end users of CS-
ECIS could provide useful information, they were not ap-
proached due to practical and business-related considera-
tions. We do not expect this exclusion to have a strong in-
fluence on the case study since most customer-related infor-
mation was found indirectly from the in-house consultants of
ChipSoft.

4. Case Study Results

4.1. ChipSoft

ChipSoft is a Dutch medium-size company that provides
comprehensive ICT solutions in the health-care domain. Its
main business activities are the production and sale of a
health-care information system, the customization of this
product for specific customers, and the reselling of all re-
quired third-party hardware and software. ChipSoft cur-
rently has a customer base of approximately 40 hospitals
spread over six countries, with most customers located in the
Netherlands.

ChipSoft was founded in 1986 and has been growing ever
since. ChipSoft currently employs approximately 100 em-
ployees. ChipSoft started with producing applications for
the automation of the primary care process(es) of medical
specialists. Over the following years, ChipSoft extended and

3



Table 1: Approximate number of employees per depart-
ment.

Research & Development 33
Implementation & Support 42
Marketing & Sales 17
Administrative Support 8

Total 100

integrated its product range with support for other processes
in the medical field, resulting in the development of a com-
prehensive hospital information system, called ZIS, in 1994.
In the autumn of 2001, it released the first release of its cur-
rent main product: the Electronic Care Information System
(CS-ECIS).2

ChipSoft currently consists of four departments: Re-
search & Development (R&D), Implementation & Support
(I&S), Marketing & Sales (M&S), and Administrative Sup-
port. Table 1 shows how the ChipSoft’s 100 employees are
distributed over the four departments. The technological side
of the activities are spread over R&D and I&S. The R&D
department consists of thirty-three software engineers, and
is responsible for the development and maintenance of the
core application functionality. The I&S department, in con-
trast, consists of forty-two consultants, and is responsible for
the implementation of the application at specific customers,
including customer-specific customizations. I&S is also re-
sponsible for providing tutorials on the use of ChipSoft prod-
ucts. Both departments are subdivided to deal with different
health-care problem domains.

4.2. The Electronic Care Information System

ChipSoft’s current product is its “Electronic Care Informa-
tion System” (CS-ECIS) that supports the various workflows
in a hospital. It can be used to support both the direct, care
activities, such as diagnosis and treatment, and the more in-
direct, management activities, such as planning and financial
settlement. For these functions, CS-ECIS stores and pro-
cesses information about both patients and the various re-
sources (e.g., beds or ORs) in a hospital. CS-ECIS is used
by a diverse group of end users, such as, secretaries, nurses,
doctors, and managers.

To enlarge its versatility, CS-ECIS consists (conceptually)
of a small shell application that uses a set of extension mod-
ules that implement the main functionality. ChipSoft cur-
rently supports twenty-two modules. The different modules
support the different workflows found in a hospital. Since
customers can choose which modules to buy, different cus-
tomers will use different module configurations. CS-ECIS

2The official product name in Dutch is: Electronisch Zorg Informatie
Systeem (CS-EZIS).

DB

Module

Presentation

Business
Logic

Shell

Data
Access

Network

Server
Database

ServerClient

Figure 2: The CS-ECIS architecture consist of clients and
a server, where the client is divided into a shell application
with a variable number of extension/implementation mod-
ules.

is therefore more accurately described as a software product
family than as a single software product.

As shown in Figure 2, CS-ECIS uses a standard client-
server architecture. ChipSoft develops, however, only the
client-side software itself, and simply resells a standard
database server (e.g., MS SQL server). Within this architec-
ture, the application shell and its extension modules are lo-
cated only at the client. Every CS-ECIS module has a three-
layer internal architecture: on top a presentation layer with
GUI code, an intermediate layer with the business logic, and
the bottom layer with database access code. The top and in-
termediate layer provide the functionality for specific work-
flows, while the bottom layer provides a generic database
abstraction shared by all modules. CS-ECIS currently stores
over 1,000 tables in its database and is built from approxi-
mately 2.2 million lines of code.

All ChipSoft software is targeted toward Microsoft oper-
ating systems, for instance, Windows 98 for the client appli-
cation and Windows 2000 for the server. This server can
also run on the Novell operating system. Apart from the
operating system, ChipSoft places few other restrictions on
the platform used. Hospitals are free to use whatever sys-
tem administration support tools they desire. However, hos-
pitals frequently use a terminal server set-up (e.g., a Citrix
server), where all software is installed and executed on a
single, heavy-weight server and light-weight client machines
(i.e., terminals) can log into that server. Such a setup is pop-
ular since it reduces the software maintenance overhead.

4.3. Support for Variability and Extensibility

To allow the application of CS-ECIS in a wide range of hos-
pitals, CS-ECIS is highly configurable. We can distinguish
the following types of variability in CS-ECIS:

• Activation of modules

4



• Per-module configuration options

• User profiles

• GUI modifications and additions

– Layout and contents of interactive screens
– Layout and contents of static reports

• Functionality modifications and additions

– User-defined fields
– User-defined expressions
– User-defined actions

• Customer-specific modules

Since ChipSoft always distributes the complete set of
modules of CS-ECIS to a customer, the modules actually
bought by a customer need to be activated before use. Chip-
Soft employs a simple licensing scheme with respect to ac-
tivation, where some parts of the software are licensed to
(i.e., activated for) the whole organization (e.g., hospital) and
other parts are licensed per workspace. The duration of a li-
cense commonly ranges from five to eight years. Licensing
is partially enforced through module activation records in the
database, which are checked at various places in the soft-
ware. Licensing is, however, mostly enforced through the
organization’s dependence on the support (i.e., consultancy)
contract with ChipSoft.

To enhance applicability, modules have their own config-
uration options, for instance, to support different third-party
applications, use different types of patient numbers, or per-
form some function differently as a matter of policy. For ex-
ample, different hospitals use different types of patient num-
bers (e.g., 7, 9, or 11 digits), and a hospital can select the type
it uses. To enable different end-users to see only those parts
of CS-ECIS they use, the application manager can create user
profiles. A user profile describes the modules an end-user is
allowed to use, and different users can be assigned different
profiles.

A large source of variability is the modification of and ad-
ditions to the graphical user interface (GUI) of CS-ECIS and
its basic functionality. To support the GUI customization,
CS-ECIS contains a GUI builder. This GUI builder allows
end-users to add and modify GUI controls (i.e. widgets),
such as, labels, database records and fields, computed values,
buttons, and menu’s. Modifications to the GUI are stored in
the database as XML-encoded data.

When the information that CS-ECIS stores, computes, or
shows by default, is incomplete or not usable by a customer,
CS-ECIS can be configured (i.e., extended) to provide the
desired situation. For instance, different fields of a table can
be extracted or a different value can be computed. If that
is not enough, the end-user can also add new fields to the
tables in the database. These new fields can subsequently be

shown and modified in the GUI. If an end user is dissatisfied
with the default interaction with CS-ECIS, she can add and
modify the behavior of the buttons and menu items in the
GUI. For example, a user can specify actions to be performed
on the database, and bind these actions to a button in the user
interface.

When a customer needs functionality that cannot be cre-
ated using standard configuration options in CS-ECIS, a
customer-specific module is developed by the R&D depart-
ment, and this module becomes part of the main code base.
The module is then distributed to all customers during a reg-
ular release, but is activated only for that particular customer.
The customer-specific module can obviously also be acti-
vated for other customers if it proves to be more generally
applicable. Note that CS-ECIS does not use or support vari-
ant modules, that is, interchangeable modules that provide
similar functionality.

4.4. Release and Deployment

Twice a year (i.e., in spring and in autumn), ChipSoft creates
a new release of the CS-ECIS software. Between releases,
ChipSoft sometimes provides one or more service packs. A
service pack is created whenever the software has signifi-
cantly changed, these changes are required immediately by
customers, and the next release is too far off. A service pack
is actually functionally the same as an ordinary release, but is
named differently mostly for marketing reasons. Since a ser-
vice pack is a full update (i.e., not incremental), it includes all
previous service packs and the release on which it is based.
To receive support, customers are (contractually) allowed to
be at most two releases behind the current release. ChipSoft
supports a separate parallel release, called a feature pack, that
contains experimental features implemented for specific or-
ganizations (see also Section 4.5.1).

A release (or service pack) consists of executables, DLLs,
resource files, and release notes. When the release requires
changes to the database schema’s in the server, a special
database conversion program is also included. As mentioned
before, even though CS-ECIS is implemented and marketed
as a collection of 22 independent modules, it is always de-
livered as a whole, with all modules included. The actual
distribution of releases and service packs is done using CD-
ROMs and the postal service.

When a customer reports a critical defect, ChipSoft re-
pairs this defect using a special kind of software distribution,
called a hotfix. A hotfix is an incremental update that con-
sists of only those files that need to be replaced in the in-
stalled release or service pack to solve the problem. While
the replaced files can be of any types, hotfixes usually involve
only DLL files. To give customers quick access to hotfixes,
hotfixes are distributed using a password-protected website.
Some problems cannot be fixed using a hotfix and require a
full update using a service pack.

5



A hotfix is intended to deal with only a single problem,
and therefore does not include previous hotfixes that dealt
with other modules. Customers are expected to install only
those hotfixes that are strictly needed, but otherwise wait for
the next regular release or service pack. Customers thus fre-
quently have only some (or none) of the hotfixes installed.
Since most dependencies between DLLs are within a sin-
gle module, a hotfix includes all the DLLs in the module
that have changed since the previous release or service pack.
A hotfix thus includes previous hotfixes that dealt with the
same module, thereby avoiding DLL dependency problems.
Currently, software developers at ChipSoft have to manually
track which deliverable files (i.e., DLLs) have changed and
thus need to be replaced by the hotfix.

ChipSoft refers to its software distributions in two ways:
a structured, customer-friendly distribution name and an ab-
solute build number. The format of the distribution name de-
pends on distribution type. A release is named using a pair of
numbers (i.e., “4.x”). Thus far, all releases of CS-ECIS have
started with major version “4”, and only the minor number
of the releases have changed. The release for autumn 2004
is named “4.6”. A service pack is named using the release
name on which it is based and a number (i.e., “4.x SP y”).
Service packs are numbered consecutively and this number
is reset on every new release. A hotfix is named using the
release or service pack name on which it is based and a num-
ber (i.e., “4.x HF z” or “4.x SP y HF z”). Hotfixes are also
consecutively numbered, and the hotfix number is reset on
every new release or service pack.

The format of the absolute build number is always a 4-
tuple (i.e., “4.r.s.b”) consisting of the major number of the
release (thus far always “4” for CS-ECIS), the minor num-
ber of the release (r), the service pack number (s), and the
relative build number (b). To indicate a build number for a
normal release, the service pack number is set to “0” (e.g.,
“4.5.0”). The relative build number is reset only with a re-
lease and not with a service pack or hotfix. Using the la-
bel/tag concept of its version management system, ChipSoft
can easily map a distribution name to the absolute build num-
ber of the originating build run. This absolute build number
refers to the build run that created the software distribution.

To identify the software installed at a particular customer,
ChipSoft stores both its base version, that is, the name of
the installed release or service pack, and a list of zero or
more hotfixes, that is, the hotfixes installed by this particular
customer, in the database of the customer. The following is
an example of this kind of installed software identification:

4.5 SP1 (4.5.1.78)
4.5 SP1 HF1 (4.5.1.85)
4.5 SP1 HF3 (4.5.1.98)

This customer has installed service pack “1” for release “4.5”
together with hotfixes “1” and “3”. The service pack was

created in build “4.5.1.78” and the hotfixes were created in
build “4.5.1.85” and “4.5.1.98”.

ChipSoft offers no support for the internal deployment
(i.e., distribution and installation) of CS-ECIS software in
a hospital. Instead, hospitals are themselves responsible for
the internal deployment of CS-ECIS, and are expected to use,
for instance, COTS products. The main reason for not pro-
viding this type of support, is that there are many ways in
which a hospital can perform the internal deployment, such
as system image distribution, manual installation, or instal-
lation on a central server, but these methods all strongly de-
pend on the structure and properties of the local computing
environment. A capable ICT department with capable appli-
cation managers, is therefore required to support CS-ECIS.

4.5. Development and Maintenance

ChipSoft develops CS-ECIS using the Delphi programming
language, and the main development tasks of the software
developers, such as editing, compiling, and debugging, are
supported by the Delphi integrated development environ-
ment (IDE). To implement CS-ECIS, ChipSoft uses several
third-party software products. The most obvious external
component is the database server, which can be either the
Microsoft SQL Server or the Advantage Database Server.
To deal with medical images, for instance, from X-ray ma-
chines, ChipSoft uses PACS (picture archiving and commu-
nication system) software. This software is provided by the
hardware vendor. Finally, to create reports from the database
for management purposes, the report builder software from
Digital-Metaphors is used.

4.5.1. Version Management

For version management, ChipSoft uses Microsoft’s Visual
SourceSafe (VSS). In its source code repositories, ChipSoft
uses mostly a file locking policy (i.e., pessimistic concur-
rency control). Locking source files is not perceived as a
bottleneck since the development work is distributed over
the developers in disjoint subsets. To combine concurrent
development of a new release with maintenance on old re-
leases, ChipSoft uses a simple branching scheme, shown in
Figure 3. The upcoming release (Release 4.7) is stored in the
trunk of the repository and the most recent releases (Releases
4.4–4.6) are available in branches.

Regularly, ChipSoft desires to develop special features
that require a longer running effort but that unfortunately
might also interfere with normal development on the trunk.
To insulate the trunk from these changes, a separate feature
pack branch. This branch is created on the latest release
branch and will be merged back to the trunk after the next
release. To keep the version tree manageable, only a single
feature pack can be active at a time. As a consequence, when
multiple special features are developed concurrently, the fea-

6



Release 4.5
Branch

Release 4.6
Branch

Feature Pack
Branch

Trunk

Merge Point of Feature Pack with Trunk

Branch
Release 4.4

Figure 3: Version Tree.

ture pack will contain the results from each special-feature
development effort. As an example, Figure 3 shows two fea-
ture packs, one on Release 4.4 and one on Release 4.6. The
changes from the Release 4.4 feature pack, have been inte-
grated into Release 4.6, while the efforts of the feature pack
of Release 4.6 are still ongoing.

To simplify version management, there is no independent
version management for the various modules. Instead, Chip-
Soft considers only revisions of the CS-ECIS application as
a whole, including database schema’s. This means that only
the client and server within a single release are guaranteed to
be compatible, and a customer cannot independently update
the client. As a consequence, consistency between artifacts
can be maintained using their version management system.

ChipSoft does not use a (formal) product description that
describes the internal and external dependencies of the mod-
ules (or DLLs) that make up CS-ECIS. As a consequence,
these internal dependencies, for instance caused by inter-
module method calls, are silently ignored. External de-
pendencies are dealt with only informally. Other compa-
nies simply keep ChipSoft informed of major changes to the
interfaces of their hard- and software. Care must also be
given to the dependency of the user-defined expressions (see
Section 4.3) on the expression language implemented by a
particular release of the client. This dependency problem
is dealt with by keeping the expression language backward
compatible.

4.5.2. Build and Release Process

The global development and release flow is shown in Fig-
ure 4. Developers work at their workstations and commit
new and modified artifacts to the central source code repos-
itory. To create global builds for testing and release, Chip-
Soft uses a dedicated build server from Atozed. The build
compiles the sources stored in the repository and creates a
directory structure with the release artifacts. The directory
can subsequently be used by the Install Shield tool to create
an installation image for the installation CD-ROM.

This build server provides a clean build environment that
ensures that the program does not dependent on a specific
workspace configuration of a developer. A global build is
specifically requested whenever the interface of a DLL has

changed and an integration test is needed, and is started man-
ually, usually twice per day. To avoid having to rebuild ev-
erything themselves, software developers can download the
latest DLLs from the build server for use in their private
IDEs.

4.5.3. Testing

ChipSoft uses no formal techniques to verify the correctness
of their software. Instead, correctness is maintained only
through testing. The build server performs a simple inte-
gration test by providing a clean build environment, which
ensures the reproducibility of the build. Furthermore, a for-
mally described test phase is entered for every release (i.e.,
twice a year). This testing is done by hand by the I&S de-
partment, and the test use cases are described in a manual.
Since these tests require a significant amount of effort (about
two weeks), ChipSoft performs these tests only on releases,
and relies on its software engineers to thoroughly test their
modifications for service packs and hotfixes. ChipSoft does
not use any automatic unit, smoke, or integration test.

Since the various hospitals that use CS-ECIS can have
very different hard- and software configurations, ChipSoft
cannot test its new releases in each and every configura-
tion. However, since the CS-ECIS is mission critical, hospi-
tals cannot simply install the software and hope for the best.
Instead, to deal with this potential incompatibility problem,
each hospital needs a local test setup where it can safely test
the new software in its particular environment. Furthermore,
this test setup allows the application managers to experiment
with new features without interfering with normal hospital
operations.

4.5.4. Internal Communication

To administrate defect information, ChipSoft uses the open
source defect tracker Mantis. This system is for internal use
only. There is currently no strong integration between Chip-
Soft’s version management system and its defect tracking
system (Mantis). Log messages in the VSS do refer to de-
fect numbers in Mantis, but defect tracking entries do not
mention the version in which the defect was fixed. To record
defect reports and enhancement requests from customers, a
separate, locally developed, customer relationship manage-
ment (CRM) system is used. This system also records all
customer information, including contract information.

To avoid problems with major changes to the software,
such as adding a new module, ChipSoft uses documented
procedures for these types of changes, described on the in-
ternal website. For the most part, however, the source code
and more-experienced programmers are considered the main
sources of information. To improve the overall knowledge
of its programmers of the software, ChipSoft organizes an
internal seminar twice a year.

7



VSSMachine
Developer

Machine
Developer

Machine
Developer

Machine
Build

Share
CD-ROM

Burner

Sources Released Artifacts Deployment CD-ROMs
Directory Tree with

Figure 4: Development and release workflow in ChipSoft.

5. Discussion

We started our case study of CS-ECIS and ChipSoft with the
overall goal of gaining insight in the release management ac-
tivities of a real-life company. When considering what we
found, an obvious observation is the existence of major dif-
ferences between the Deliver model and ChipSoft’s modus
operandi. The four most pronounced differences are the use
of modularization, the use of configuration and variability,
the use of network-based software deployment, and the ex-
plicit management of software knowledge.

5.1. Modularized Software

The first difference between ChipSoft’s activities and the De-
liver model concerns the use of modularization. To gain flex-
ibility, the Deliver model expects the use of modularization
in all phases of the software life cycle, such as design, im-
plementation, testing, release, delivery, and installation. At
ChipSoft, in contrast, modularization is used solely during
design and implementation and as a marketing technique.
For instance, all modules of CS-ECIS are versioned as a
whole and all modules are always present in every instal-
lation.

5.2. Configurable Software

The second difference concerns the use and support of vari-
ability and configurability. To gain further flexibility, the De-
liver model expects the use of configurable modules, variable
configurations of modules, and variable architectures [22].
This support enables the creation of product families, prod-
uct lines, and product populations through module compo-
sition. In the model, variability can be bound at the vari-
ous times, for example, release, installation, or runtime. At
ChipSoft, variability and configurability is achieved only at
the product feature level through its use of a configurable
and extensible GUI, database, and bindings. Since ChipSoft

does not use variability through (dynamic) application com-
position, variability is bound at installation and runtime.

5.3. Network-based Software Deployment

The third difference between ChipSoft’s activities and the
Deliver model concerns the use of computer networks for
the deployment of software, using protocols that take ver-
sioning information into account. The Deliver model ex-
pects the use of computer networks, such as the Internet, to
deliver software as either full packages or incremental up-
dates, to decrease the overhead of providing new versions
and shortens the release phase of a product, preferring bits
over atoms. ChipSoft currently uses network-based soft-
ware delivery only for its hotfixes where short release cycles
are important. Furthermore, the protocols used are generic
WWW protocols without support for versioning.

5.4. Software Knowledge Management

The final (major) difference concerns the active and explicit
use and management of software knowledge. To automate
the release, and relate development and deployment, activi-
ties, and gain insight in them, the Deliver model promotes the
active gathering and processing of software knowledge. This
knowledge includes knowledge about what is installed at var-
ious customers. These activities require a (semi-)formalized
model of both the software product and its processes. In con-
trast, ChipSoft currently manages only a limited amount of
information (e.g., build information and defect tracking), and
this information is not dealt with in an integrated fashion.
Most information about the product and processes are dealt
with only informally. Furthermore, ChipSoft only has lim-
ited knowledge of the software installed at their customers’
sites.

5.5. Lessons Learned

ChipSoft is a successful company that has grown steadily
over the years. Given this success and the clear differences

8



between the Deliver model and ChipSoft, these differences
clearly do not represent strong requirements in its applica-
tion domain. One reason why the flexibility of the Deliver
model might not be required, suggested by ChipSoft, is that
the health-care application domain is very conservative when
it comes to managing ICT. As software changes might inter-
fere with day-to-day operations and government regulation
change regularly requiring software changes anyway, other
changes are usually undesirable. Regular small change to
the software are all that is needed and desired.

The main lesson learned for the Deliver model during the
case study is the fact that the model is not universally usable.
There are software application domains that do not need the
support it provides. The question then remains what appli-
cations domain do require the support of the Deliver model
and its Intelligent Software Knowledge Base. An applica-
tion area where much modularity is required and software
evolves rapidly is embedded software. Further investigation
will therefore include this area.

6. Related Work

Before the introduction of component-based software engi-
neering (CBSE) and network-based software delivery, re-
lease management was barely recognized as as a separate
field within software configuration management, as evident
from [5, 20]. However, their introduction has made compre-
hensive release management both challenging and essential.

Several research systems have taken the challenge to sup-
port component-based software products created by commu-
nities of distributed developers. Examples of such systems
are SRM [21], Software Dock [9], and the online package
base [6]. Others have considered proper ways of modeling
the deployment process. Of particular interest in this re-
search is the problem of specifying component dependencies
and configuration, as dealt with in the Deployable Software
Description (DSD) [11], and Open Software Description
(OSD) and Management Information Format (MIF) [10]. An
extension of this work also considers their relation to feature
models [22]. An other issue to consider is the proper model-
ing of the component life cycle, such as in [3, 14].

It is well known that the development and management of
software is knowledge intensive [19], and that managing this
knowledge can be profitable but difficult [16]. To deal with
this difficulty, various knowledge bases have been proposed
that can roughly be divided into two categories. The first
category deals with storing knowledge about the problem-
solution space. An example of such as system is Concept-
Base [15]. The second category deals with storing knowl-
edge about the software assets themselves. Some systems
in this category focus on software development focusing on
reuse [4] or consistency requirements [17]. The similarity
of these systems with product data management (PDM) sys-

tems has lead to research efforts to come to some form of
integration [8, 18].

7. Conclusion

This paper describes the results of a case study we performed
of the release management of CS-ECIS, a health-care in-
formation system developed by the Dutch software vendor
ChipSoft. This case study had two goals. The first goal was
to describe the release management and related development
and deployment activities of ChipSoft. The second goal was
to compare these activities with the initial Deliver model, in-
cluding the Intelligent Software Knowledge Base (ISKB).

The main conclusion from this case study is that there is
currently no business case for introducing an ISKB at Chip-
Soft since ChipSoft’s requirements are too different from the
Deliver model. Subsequently, little insight was gained with
respect to the challenges in designing an ISBK. Therefore,
different companies have to be found where we can gain this
insight. The case study does provide the possibility of com-
paring this case with the Exact Software [12] and Planon [13]
cases, as part of future work.

Acknowledgments

We would like to thank Ernst ten Damme, Chris Endhoven,
Bertus Buitenhuis, and Robert Hardholt of ChipSoft for the
contributions made to this case study.

References

[1] E. Bailey. Maximum RPM. 1997.

[2] G. Ballintijn. A case study report on the development,
release, and deployment processes of chipsoft. Tech-
nical Report SEN-E0506, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, The Netherlands, Apr.
2005.

[3] A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der
Hoek, D. Heimbigner, and A. L. Wolf. A characteriza-
tion framework for software deployment technologies.
Technical Report CU-CS-857-98, Department of Com-
puter Science, University of Colorado, Boulder, CO,
USA, 1998.

[4] P. Constantopoulos, M. Jarke, J. Mylopoulos, and
Y. Vassiliou. The software information base: A server
for reuse. VLDB Journal, 4(1):1–43, 1995.

[5] S. Dart. Concepts in configuration management sys-
tems. In Proceedings of the 3rd International Workshop
on Software Configuration Management, pages 1–18.
ACM Press, June 1991.

9



[6] M. de Jonge. Source tree composition. In Proceedings:
Seventh International Conference on Software Reuse,
volume 2319 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[7] J. Dunagan, R. Roussev, B. Daniels, A. Johnson,
C. Verbowski, and Y.-M. Wang. Towards a self-
managing software patching process using black-box
persistent-state manifests. In Proceedings of the
International Conference on Autonomic Computing
(ICAC’04), pages 106–113, New York City, NY, USA,
May 2004.

[8] J. Estublier, J.-M. Favre, and P. Morat. Toward SCM
/ PDM integration? In Proceedings of the 8th Work-
shop on Software Configuration Management (SCM 8),
LNCS 1439, pages 75–94, July 1998.

[9] R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L.
Wolf. An architecture for post-development configu-
ration management in a wide-area network. In Pro-
ceedings of the 17th International Conference on Dis-
tributed Computer Systems (ICDCS), pages 269–278,
Baltimore, MD, USA, May 1997.

[10] R. S. Hall, D. Heimbigner, and A. L. Wolf. Evaluating
software deployment languages and schema. In Pro-
ceedings of the 1998 International Conference on Soft-
ware Maintenance (ICSM), pages 177–185, Bethesda,
MD, USA, Nov. 1998.

[11] D. Heimbigner, R. S. Hall, and A. L. Wolf. A frame-
work for analyzing configurations of deployable soft-
ware systems. In Proceedings of the Fifth IEEE Int’l
Conference on Engineering of Complex Computer Sys-
tems, pages 32–42, Las Vegas, NV, USA, Oct. 1999.

[12] R. Jansen, G. Ballintijn, and S. Brinkkemper. Soft-
ware release and deployment at Exact: A case study
report. Technical Report SEN-E0414, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, The
Netherlands, Sept. 2004.

[13] S. Jansen, G. Ballintijn, and S. Brinkkemper. Release
and deployment at Planon: A case study. Technical Re-
port SEN-E0504, Centrum voor Wiskunde en Informat-
ica (CWI), Amsterdam, The Netherlands, Mar. 2005.

[14] S. Jansen, S. Brinkkemper, and G. Ballintijn. A process
model and typology for software product updaters. In
Proceedings of the 9th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2005),
Manchester, United Kingdom, Mar. 2005.

[15] M. A. Jeusfeld, M. Jarke, H. W. Nissen, and M. Staudt.
Conceptbase: Managing conceptual models about in-
formation systems. In P. Bernus, K. Mertins, and

G. Schmidt, editors, Handbook of Information Systems,
pages 265–285. Springer-Verlag, 1998.

[16] P. Klint and C. Verhoef. Enabling the creation of
knowledge about software assets. Data Knowl. Eng.,
41(2-3):141–158, June 2002.

[17] B. Meyer. The software knowledge base. In Proceed-
ings of the 8th International Conference on Software
Engineering, pages 158–165, London, United King-
dom, Aug. 1985.

[18] A. Persson-Dahlqvist, I. Crnkovic, and M. Larsson.
Managing complex systems - challenges for pdm and
scm. In Proceedings of the Tenth International Work-
shop on Software Configuration Management (SCM-
10,ICSE-23), Toronto, Canada, May 2001.

[19] P. N. Robillard. The role of knowledge in software de-
velopment. Communications of the ACM, 42(1):87–92,
Jan. 1999.

[20] J. A. Scott and D. Nisse. Software configuration man-
agement. In Guide to the Software Engineering Body
of Knowledge (SWEBOK), chapter 7, pages 103–119.
IEEE, May 2001.

[21] A. van der Hoek and A. L. Wolf. Software release man-
agement for component-based software. Software —
Practice and Experience, 33:77–98, 2003.

[22] T. van der Storm. Variability and component composi-
tion. In Proceedings of the Eighth International Con-
ference on Software Reuse (ICSR-8), Madrid, Spain,
July 2004.

[23] R. van Ommering. Building product populations with
software components. In Proceedings of the 24th in-
ternational conference on Software engineering, pages
255–265, Orlando, FL, USA, May 2002.

[24] R. K. Yin. Case Study Research: Design and Methods,
volume 5 of Applied Social Research Methods Series.
Sage Publications, Inc., Thousand Oaks, CA, USA, 3
edition, 2003.

10


